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Executive Summary

As revolutionary increases in coherent x-ray flux come online via upgraded technologies 
at both synchrotrons and x-ray free electron laser facilities, materials scientists are facing 
radically increased data volumes, much higher data velocity, and data from an ever-increasing 
number of sources and at larger scales. The challenge is to leverage these data for scientific 
discovery; therefore, data science is an area of increasing interest in the domain of x-ray light 
source user facilities. Many recognize that there are gaps between data science, materials, and 
light sources. Furthermore, many agree that there is a need as a community to clearly identify 
the gaps and prioritize ideas on how best to bridge them.

Los Alamos National Laboratory (LANL) hosted a workshop entitled: “Gap Analysis: Materials 
Discovery through Data Science at Advanced User Light Sources” held on October 3-5, 2018, 
in Santa Fe, New Mexico. The workshop brought together more than 60 invited experts 
in data science, materials science, and light source experiments from academia, industry 
organizations, and national laboratories. All of the Department of Energy Office of Science 
x-ray light source laboratories were represented.
 
The workshop began with a motivational keynote address from Prof. Mike Dunne of Stanford 
University and Director of the Linac Coherent Light Source at SLAC National Accelerator 
Laboratory. His talk focused on data science needs as light sources are upgraded, especially 
during the upcoming LCLS-II upgrade. 

Plenary talks focused on data types, experimental design, mathematics, modeling, and 
simulation. Breakout sessions covered six experimental techniques: x-ray photon correlation 
spectroscopy, resonant inelastic x-ray scattering, Bragg coherent diffraction imaging, dynamic 
x-ray diffraction at high pressures, high pressure diamond anvil cell x-ray diffraction, and 
high energy diffraction microscopy. Eight additional breakout sessions covered data science 
techniques: machine learning, modeling and simulation, visual analytics, statistics and 
emulation, physics and math in data analysis, data management for data science, materials 
databases, and data mining.

Priority gaps are identified in the following areas: 

Gap 1: Tools for exploiting multidimensional and multimodal data. Analysis of data 
from multiple data types, other experiments, or simulations is often not performed 
because it can be complex and require theoretical simulation tools and increased 
computational resources.

Gap 2: Data, algorithm, and software curation. Often little support is provided for 
data curation in addition to open source, debugged, and efficient software for relevant 
algorithms. Materials databases are not easy to effectively utilize for data sharing and 
reuse.
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Gap 3: Real-time decision-making analytics and tools. Real-time analytic and decision-
making tools have lagged behind advances in experimental facilities and the surge of data 
volume and velocity. Essential tasks, such as anomaly detection and error reduction, are 
slipping through the cracks. Those users without access to data science lag behind those 
with access.

Gap 4: Limited technology literacy of available tools. Programming languages and 
interfaces that make it easier for scientists to create software are still needed. Software 
infrastructure provided by user facilities needs to be user-friendly as well as production-
quality.

Gap 5: Data reduction/extraction planning and tools. Scientists need tools for 
compression, streaming data formats, data veto, and more. The community is aware that 
all data cannot be saved and they must address the gaps in data reduction and extraction 
planning and tools.

Gap 6: Experimental design aligned to research questions. Analytical software stacks 
that include simulation, machine learning, and data science are not widely available, yet 
would provide systematic, principled, and automated support for pre- and in-experiment 
design. Advanced and semi-automated experimental design are needed to quickly re-plan 
experiments.

Priority research opportunities (PROs) are identified in the following areas:

PRO 1: Real-time decision-making tools that provide data-informed decisions. 
Scientists need tools that provide high-level feedback and choices during an experiment. 
They want recommendations with levels of uncertainty and a rationale, but also be able to 
drill down.

PRO 2: Codesign of experiments with data analysis, end-to-end simulation and 
planning. This codesign includes research in statistical emulation and experimental 
design, beamline simulation for feedback control, and end-to-end experiment simulation 
and planning.

PRO 3: High-dimensional data visualization and interaction. Research is needed in 
reconstructing images or structure from vast amounts of data, incomplete data, or noisy 
data. Capturing the time dimension is important, too. Approximate solutions are also 
needed.

PRO 4: Ubiquitous, automatic metadata capture. Metadata (data that describe other 
data) support database design and access as well as data science, such as machine 
learning. Nonintrusive metadata capture requires research in understanding metadata 
requirements.
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PRO 5: Advanced data analysis (multimodal, multiscale) enabled by searchable, 
open source tools. Experiment data analysis can benefit from different data types used 
together, previous experiment data, data from related experiments, experiments at 
different facilities, simulation data, emulated data, and data at different time and length 
scales.

The following transformational opportunities are identified for the materials science 
endeavor that are presented by light source experiment facility advances: 1) increasing 
call to probe, understand, and control the mesoscale, 2) probing the atomic scale in ever-
increasing dimensions (three spatial dimensions, time, spectral/energy, and others), 3) 
materials synthesis and discovery via pathways and nonequilibrium processes, 4) theoretical 
or numerical models used during experiments, and 5) data science tools applied to materials 
science. 

Five revolutionary technology advancements are identified: 1) detector and sensor 
advancement, 2) in situ experiment analysis, 3) ubiquitous computing, 4) computing 
hardware, and 5) data-related initiatives and activities.

Follow-on action items are identified and include outreach, education, funding opportunities, 
and the development of community resources. The contributions and level of engagement by 
workshop attendees were remarkable, which is encouraging and bodes well for future activity 
in this area. The issues raised in this workshop are important to being at the technological 
edge in an ever-more competitive national and international environment, and important 
to accelerating scientific discovery that supports academia, industry organizations, and the 
national mission of the laboratories represented at the workshop.

Scientific
Frontiers

Technology
Advancements

Gaps Research
Opportunities

Real-time decision-making tools
Codesign of experiments with analysis
and simulation
High-dimensional data visualization
Ubiquitous automatic metadata capture
Advanced data analysis and search tools

Tools for multidimensional and multimodal data
Data, algorithm, and software curation
Real-time decision-making support
Limited technology literacy of software tools
Experimental design for research

Detector and sensor advancement
In situ experiment analysis
Ubiquitous computing
Computing hardware: scaling compute, 
storage, and network
Data-related initiatives and activities

Probe, understand, and control the mesoscale
Probing atomic scale in increasing dimensions
Materials synthesis and discovery via pathways
and nonequilibrium processes
Theoretical and numerical methods used in
experiments
Data science tools applied to materials science

Summary graphic for the Gap Analysis workshop.
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1 Workshop Objectives

This workshop was largely motivated by the overwhelming challenges posed by recent 
and future upgrades to x-ray light source user facilities. X-ray light source facilities are 
experiencing unprecedented increases in available x-ray flux. These upgrades include 
diffraction-limited storage rings (DLSR) at synchrotrons and x-ray free electron lasers (see 
Figure 1) [1, 2]. A new generation of synchrotron storage rings are emerging around the world 
beginning with the MAX IV in Sweden [1] and the upgrade to the European Synchrotron 
Research Facility (ESRF) in France that are enabled by multi-bend achromat lattices. These 
DLSR increase average coherent x-ray flux by upwards of 100 times compared to traditional 
synchrotrons. Additionally, x-ray free electron lasers, beginning with the first hard x-ray free 
electron laser (XFEL) at the Linac Coherent Light Source (LCLS) at SLAC National Accelerator 
Laboratory, have increased peak x-ray brightness by approximately 10 billion times compared 
to past synchrotron sources. These new brilliant XFELs have been rapidly adopted across the 
world.
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Figure 1. Plot showing current average brightness of current XFELs, DLSR upgrades to synchrotrons, and planned LCLS-II upgrade (from Mike 
Dunne’s keynote presentation).

Although hailed for the scientific discovery, these upgrades have enabled [3], and will 
continue to enable, considerable research.  Advanced supporting technology is necessary 
to fully utilize the upgraded facilities and the vast amounts of data that will be produced 
by them. Accelerator technology is far outpacing our ability to use and detect the photons 
produced and process and store the data produced at these facilities. Experiment output data 
rates at facilities like the upgraded LCLS-II are projected to reach terabyte-per-second data 
rates (Figure 2). Data extraction is particularly challenging at these rates.
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Take, for example, the challenge of high data rates and volumes. One can illustrate this using 
the Fisherman’s Analogy. The fisherman gets a new net that is better than anything he had 
before. He catches so much sea life in his net during a drought that he cannot keep them all in 
the boat or it will sink. He has three options: reject whatever is not a fish (veto), just save the 
parts of the fish he cares about (feature extraction), or pack them into the boat in the most 
efficient manner (compression). This analogy summarizes current thought in data reduction 
and utilization: throw out perceived useless data, extract only useful data, or efficiently save 
all data via compression. The first two choices risk discarding important science that may not 
be known until later or requires significant processing to extract from noise. The last choice is 
rapidly getting beyond our storage capabilities.

1. Veto 2. Feature Extraction 3. Compression

Figure 3. Analogy of fisherman with a new net and how different data reduction and extraction strategies can be implemented.
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Another challenge is the sheer volume and variety of experiments that are performed at 
these light source facilities. Experimental techniques are multiplying as users develop new 
spectroscopic, diffraction, and imaging methods that capitalize on the increased x-ray 
coherent flux. These developments are presenting a new challenging paradigm for Big Data 
science, as compared to the traditional large high energy physics user facilities such as the 
European Organization for Nuclear Research, known as CERN. As Prof. Simon Billinge of 
Columbia University and Brookhaven National Laboratory said at the workshop, “We are not 
200 scientists working on one experiment, but 200 scientists working on 2,000 experiments.” 
Therefore, solutions to challenges faced by scientists in this domain, broadly defined as 
materials science, are usually not one-size-fits-all.

At the same time as light source science is growing and encountering new challenges, 
computing is also evolving with large-scale and heterogeneous hardware resources as well as 
data science (Figure 4) that can be leveraged to help meet light source data challenges.

Data Science is the 
integration of 

techniques from:

Statistics
Machine learning
Applied math
Image processing
Visualization

Simulation science
Experimental science
Observational science

...applied to:

Data size
Fidelity
Time-to-solution

...addressing 
requirements of:

...using computer 
science approaches 

that include:

Parallelism
Data storage 
and transfer

...with human 
interaction to 
make decisions 
about science.

What is Data Science for Light Sources?

Figure 4. Data science definition by James Ahrens. 

With these light source and computing challenges and also the opportunities in mind, the 
workshop aimed to look for consistent themes among various light source experimental 
subcommunities doing research in materials science, such that cross-cutting gaps and priority 
research areas utilizing data science could be discerned. Talks and discussions focused 
on six representative experiment types on the first day, 12 data science techniques on the 
second day, and synthesizing discussions on the last day (see agenda in Appendix D). Keynote 
and plenary talks brought the discussion focus on key cross-cutting topics, such as cloud, 
data reduction, data types, experimental design, mathematics, modeling, and simulation. 
Discussions also touched on general themes such as, “Are we conducting experiments or 
taking measurements? If it is an experiment, are there different requirements than if we were 
taking measurements?” The data science topic names were often qualified by when the data 
science is done (e.g., “pre-experiment machine learning,” or “in-experiment statistics”), so as 
to make data science solutions more specific and ensure the entire experiment workflow was 
covered by the workshop.
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2 Materials Science Endeavor

Using light source experiment facilities truly presents transformational opportunities for the 
materials science endeavor. With the newly available x-ray flux, advanced detectors, and new 
data science tools, materials scientists and engineers are pushing to ever smaller and faster 
time scales to tackle problems as diverse as materials failure to mimicking photosynthesis 
in bio-inspired solar cells [4–7]. Additionally, moving beyond an observational materials 
science capability to a predictive capability where we can design the materials of the future 
is highlighted in numerous reports [6–13]. Four transformational opportunities for materials 
science were identified by the workshop.

I. Increasing call to probe, understand, and control the mesoscale. We can define 
the mesoscale as the gap between the atomic scale where molecular dynamics codes 
most effectively capture materials behavior and the bulk scale where continuum models 
dominate [9–10]. A critical aspect of developing a predictive capability for materials science 
is understanding the role of heterogeneity at the mesoscale frontier via such materials 
attributes as grain boundaries, defects, impurities, alloys, and materials boundaries. 
Advanced accelerator-based x-ray light sources stand ready to probe this gap and give 
materials scientists the tools necessary to develop the fundamental understanding of 
heterogeneities as well as the mesoscale in order to develop necessary predictive capability 
[1–3, 6–7].

II. Probing the atomic scale in ever-increasing dimensions (three spatial dimensions, 
time, spectral/energy, etc.). More often, facility proposals are pursuing increasingly 
difficult experiments with themes such as rare events, phase transformation kinetics, and 
chemical pathways [6–7]. As one example, scientists are proposing rapidly probing large 
volumes (upwards of millimeters cubed) at the atomic scale to look for phase transformation 
nucleation of materials under extreme physical or chemical environments with x-ray 
photon correlation spectroscopy or coherent imaging techniques [6–7]. Both of these 
techniques are data hungry (reading out megapixel arrays of large bit pixels at kilohertz 
rates) and computationally intensive (multiple Fourier transforms for iterative phase 
retrieval algorithms). For starters, experimenters must comb through potentially kilohertz to 
megahertz frame rates of these megapixel arrays, at times on non-reproducible experiments 
where small details need to be extracted from multimodal data sets (diffraction, imaging, 
spectroscopic).

III. Materials synthesis and discovery via pathways and nonequilibrium processes. 
Materials synthesis and discovery are dependent on initial conditions and pathways. As 
such, in situ and time-resolved results are essential elements. Lacking are the visualization, 
decision-making, and feature extraction tools necessary to prevent lost opportunities at 
experiments as illustrated in Figure 5. 
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Figure 5. Schematic of the idealized discovery science process at x-ray light sources. Key elements are motivated by and compared to 
simulations; theory is used to motivate the hypotheses, experimental planning, simulation and experimental results, then real time comparison, 
data reduction, synthesis, and inference that lead to feedback and iteration upon the simulations and experiments. Ideally, these processes can 
be conducted in real time at the experiment (Credit: Christine Sweeney, Cindy Bolme, James Ahrens, LANL ASSIST LDRD-DR, 2016).

 
IV. Theoretical or numerical models used during experiments. Models could be used to 
guide experiment hypotheses and proposals prior to experiments, but all too often scientists 
cannot query these models in real time during the experiment. These lost opportunities can 
take the form of false positives (taking the wrong data believing they are correct), missing 
the key features of the data (i.e., not getting in the correct parameter regime), and lacking 
the data needed to make decisions (i.e., wasting time). These gaps are identified in the 
paragraph below. Developing the ability to query these models in real time would represent a 
transformational opportunity—especially if these comparisons can guide experiments in real 
time.

What is desperately needed at advanced x-ray user facilities are the tools increasingly 
available in the world of data science: visualization, data reduction/synthesis, real-time data 
reduction tools, real-time decision-making tools, and real-time tools for querying simulations/
emulations. Working smarter by using advanced data science tools is absolutely required 
because just working harder cannot overcome the challenges imposed by trying to process 
ever-increasing amounts of data. What is critical is that we take the right data.
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Reeju Pokharel (LANL) mounting a sample for diffraction measurements during in-situ heating and subsequent loading of additively manufactured 
steel at 1-ID beam line at the advanced photon source. Photo courtesy Tom Stockman.

3 Revolutionary Technology Developments

In addition to the revolution in x-ray light sources, the Gap Analysis Workshop was motivated 
by a number of revolutionary technology developments that are game changers for 
experimental science. These developments are key to future scientific discoveries; however, 
they additionally pose challenges to the community in terms of adoption and were addressed 
by the workshop. Five technology developments were identified by the workshop:

I. X-ray detector advancement. Sophisticated detectors are emerging with increased spatial, 
temporal, and spectral resolution while aiming to keep up with frame rates in the kilohertz 
regime. These new detector characteristics will provide better resolution than in the past and 
enable experiments to keep up with increased beam flux, but will result in vastly increased 
data volumes (see Figure 6 with new gigahertz rate framing cameras [14]). Detector capability 
and innovation will be needed for cutting-edge materials science research. Some examples 
are gated detectors that can handle increased frame rates, detectors with contiguous angular 
and azimuthal coverage, detectors that assist with texture analysis, detectors with increased 
dynamic range, and detectors with smaller pixel size.

II. In situ experiment analysis. There is a paradigm shift in the use of simulation to do in 
situ interrogation of experiments instead of ex situ (post-experiment). Using simulations (or 
synthetic data) allows us to query the data in real-time to help with the next set of decisions. 
This mode of inquiry is possible due to computationally advanced high-performance 
computing (HPC) platforms that can execute ensembles of simulations (many runs with 
different parameters) that provide ample coverage of the search space of possible answers.
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Figure 6: Advances in detector technology are enabling higher data rates and data volumes. For example, the new Icarus detectors from SLAC 
can enable multiple frame readouts of x-ray pulses separated by a few nanoseconds. As detectors approach the ability to read out at MHz rates 
continuously, data volumes will approach multiple TB/s [14].

III. Ubiquitous computing. The phrase “ubiquitous computing” refers to increasingly 
available computing resources—on any device, in any location, and in any format. Ubiquitous 
computing is coming to the light source experiment world as well. This leads to the emerging 
possibility of “ubiquitous provenance”—access to provenance (information about what was 
computed and how) available on any device, in any location, and in any format. Ubiquitous 
provenance makes it possible to record much more information on experimental settings, 
conditions, and data processing choices. Provenance will capture everything that has been 
done to the data from cradle to grave to allow users to track all relevant metadata and 
processes performed on their data. It opens up many more possibilities on what can be done 
with the resulting data as well.

IV. Computing hardware. Memory technology is making it easier to store more information 
and do more computations in situ. Computational accelerators are speeding up calculations. 
Field programmable gate arrays enable streaming data through custom hardware configured 
to do common mathematical functions. Custom machine-learning hardware is also 
appearing. Exascale computing [15] and interfacility workflows are bringing the “big iron” 
(leadership class supercomputers) to experimental science. They are enabling the coupling 
of advanced analytics and simulations to live experiments. Supercomputers can be used to 
generate massive data sets for training of machine-learning models that can be used to do 
experimental analysis.

V. Data-related initiatives and activities. A recent United States presidential executive 
order [16] has put artificial intelligence, machine learning, and data curation on the national 
agenda. Big data in the arena of massive online data has sparked commercial innovation in 
cloud computing and cloud-based data science. It is projected that by 2025, 49 percent of 
the world’s stored data will reside in public cloud environments [17]. Companies like Amazon 
Web Services are coming up with innovative ways [18] to transport large amounts of data 
to the cloud. It could be possible that in the future, cloud computing could become a more 
affordable option for scientific purposes.
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4 Priority Gaps

Now that we have reviewed the motivating background and rapid advances in x-ray light 
sources, data volumes, materials science, and enabling technology, we will review the 
gaps and priority research opportunities identified at the workshop. Workshop attendees 
converged on six gaps in data science for materials science at light sources. The following 
subsections describe each gap, why it is important to close this gap, and any barriers and 
challenges to doing so.

Gap 1: Tools for Exploiting High-Dimensional and Multimodal Data

One of the biggest gaps identified in the workshop was inadequate experimental and 
analytics tools for exploiting high-dimensional, multimodal data. Experimental scientists 
make decisions based on many forms of data. For example, for a dynamic compression-
related experiment, the materials scientist needs to know the initial state of the material, the 
phase diagram for the material, and the deformation and transformation mechanism. Data 
that provides this information may come from diffraction patterns, x-ray images, a variety of 
visible or x-ray spectroscopies, velocimetry measurements (velocity of the material during 
a shock), historical phase diagram information, and even synthetic data resulting from 
simulations. One example from dynamic compression experiments from the LCLS is shown in 
Figure 7.
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Not only do experimentalists use multiple data types from light source experiments, they 
also want to use data from other kinds of experiments, such as spectroscopy. X-ray diffraction 
(for atomic structure) and spectroscopy (for electronic properties) using current and next-
generation x-ray sources will be key to obtaining synchronized measurement of atomic 
structure and electronic properties to reveal basic structure–function relationships [13].

Having a specialized tool for each kind of data may be effective in isolation, but in order 
to view and reason about multiple data types from different sources and with different 
fidelity, better analytic tools are needed. Analysis of high-dimensional and multimodal data 
can be quite complex and often requires the involvement of theoretical simulation tools, 
mathematicians and computational scientists, and increased computational resources. 
This problem is exacerbated by the variety of experiments being performed and data 
types possible for experimental data. Some commonalities exist in data types generated 
by standard sensors and detectors at user facilities; however, users also bring their own 
equipment, such as custom stages, motors, attenuators, and others, that may change how 
experiments are conducted and how data coming from standard sensors are interpreted.

Gap 2: Data, Algorithm, and Software Curation

Experimental scientists are faced not just with creating experimental data, which is 
challenging on its own, but curating the data (labeling, storing, searching for, and accessing 
their data). For many facilities, little support is provided for data curation. At some facilities, 
the user is responsible for taking home his or her data on his or her own drive. Additionally, 
users need to develop and manage code for processing and analyzing the data. For many 
experiments, open source, debugged, and efficient software for relevant algorithms is not 
available, leading to unmanaged ad hoc scripts that get modified per experiment run. The 
lack of curated data and code slows down science because it is harder to build on previous 
efforts. This can create duplicated efforts by a number of scientists.

Fully curated data are also dependent on provenance (information about how the data 
were obtained). Lack of provenance affects reproducibility of experimental results. Lack of 
reproducibility degrades the quality, integrity, and the pace of science. This provenance light 
or provenance weak approach is becoming less acceptable as funding agencies require data 
management plans and publishers require authors to submit information that allows others 
to obtain data and reproduce results. Accessing, aggregating, and comparing data without 
consistent curation is challenging, if not impossible.

Data curation is supported by materials databases. Just as protein databanks have 
revolutionized biological sciences, materials databases have the potential for revolutionizing 
materials science [19–20]. Materials databases are starting to make headway and have great 
potential for accelerating materials design and education by providing new data and software 
tools to the research community [19]. Not only can they store data, algorithms, and software, 
but they can also store both experimental and simulation data, thus leveraging both. In 
addition, they enable a type of crowd-sourced collaborative science, which is a new direction.
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Although materials databases could be a boon to experimental science, gaps in this area 
still exist. Some gaps in current materials databases are the following: consistent and usable 
application programming interfaces (APIs), interoperability between different materials 
databases, insufficient amounts of new experimental data being added to materials 
databases, insufficient metadata to properly associate with the data, and lack of investment 
in long-term materials database maintenance and staff. Filling these gaps could help realize 
the potential of materials databases.

Gap 3: Missed Opportunities During Experiment: Real-Time Decision-Making 
Analytics and Tools

The lack of automation and of real-time decision-making analytics and tools has led to 
many missed opportunities for capitalizing on real-time experiment steering. Previously, 
experiments took longer and it was standard practice for scientists to do many tasks 
manually. Even with overnight shifts, scientists could not keep up. With upgraded 
experimental facilities and supporting computing systems, the duration and cadence of 
experiments is significantly accelerated. At the same time, the volume and velocity of 
data have surged. Support for higher level analytic and decision-making tools has lagged. 
The cognitive load to be able to handle the experiment pace with manual processing has 
become untenable, especially at XFELs. Essential tasks such as anomaly detection and error 
reduction are slipping through the cracks. Challenges in closing this gap include providing 
sufficient automation at all parts of the workflow so that there are no remaining bottlenecks, 
developing decision-making tools that help with many kinds of experiments, not just one in 
particular, and making this workflow production-quality so that it can be relied upon, trusted, 
and easy to use. There is a growing gap between user groups who have access to teams of 
data science collaborators and their tools and those who do not. There is a concern that 
smaller institutions with limited resources will fall behind and be excluded. Furthermore, 
light source research on materials involves systematically varying experimental conditions 
to elicit a material response and your chances of doing this are much greater if you can vary 
parameters correctly in a single beam time. It is much harder and often impossible to recreate 
conditions after an experiment shift is over.

Gap 4: Software Literacy (Both Languages and Facility Infrastructure): An 
Educational Gap

Light source accelerators have long been an engineering challenge and advancements in their 
technology have been an incredible achievement. As we move into an age where accelerators 
are more productive than we could have ever imagined decades ago, software needs for 
users are coming to the fore. Capability in designing, assembling, maintaining, and operating 
accelerators has been developed; however, a corresponding capability in computation that 
maximizes the usage of these accelerators is less developed, enough so that it appears to be 
a gap. Software technologies, such as machine learning, visualization, and other data science 
techniques, are progressing rapidly, which adds to the difficulty scientists have in becoming 
more software literate. With the wide variety of experiments and science domains, software 



20

needs are diverse, which also make software literacy more challenging.

Scientists from earlier days in light source experimentation are picking up software skills 
as they can. No longer can an experimental scientist obtain an undergraduate or graduate 
degree in physics or chemistry without having participated in some sort of software 
engineering effort. Many take classes in computer science as well. User facilities, although 
often not as equipped locally with the scale of computing as some national laboratories, 
are becoming more adept in computing; however, much more progress in this area could be 
imagined. Programming languages and interfaces that make it easier for scientists to create 
software are still needed. Software infrastructure and utilities provided by user facilities have 
been improved, but require more support to be user-friendly and production-quality.

This gap in software literacy, although quite visible to materials experimental scientists, 
seems to be one that has not received the attention it could at a programmatic level in the 
form of targeted initiatives that result in sufficiently increased computing software and 
systems education, hackathons, webinars, and user-friendly documentation. The biological 
community has a longer history of advanced computation engagement than the materials 
community, so it seems to be somewhat ahead in this respect. Perhaps this is due to an 
earlier need for computation in connection with genetics and macromolecular protein 
crystallography. This has accelerated with high data volumes and rates in experimental serial 
femtosecond crystallography. We are now seeing that these skills are equally important 
for materials research as data volumes and rates in this experimental regime reach levels 
previously encountered by the biological community.

Gap 5: Planning for the Data Tsunami: Data Reduction and Extraction 
Planning and Tools

The data tsunami, while affecting certain light source facilities (like XFELs) more than others 
in terms of unprecedented absolute data volumes and velocities, also applies to many other 
light sources and experiments. This is because “big data” really means data that is much 
bigger than what has been encountered previously. So even for many small data experiments, 
when the data are one to two orders of magnitude larger or produced faster than what is 
typically processed and stored, it presents major challenges for analysis and obtaining the 
desired results during an experiment. Areas of data growth in light source experiments for 
materials science include dynamic compression, with a 106 increase in shot rates over the 
past 20 years. Now, at facilities such as the European XFEL (Eu-XFEL) 2,700 individual x-ray 
pulses can be delivered separated by 200 nanoseconds arriving in bunches at 10 hertz. 
Growing data rates are also on the horizon for resonant inelastic x-ray scattering (RIXS), where 
about 300 kilohertz multichannel detector readout is a possibility in the near future.
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Figure 8. A four-step description of the data flow for LCLS-II and LCLS-HE from the October 2018 report “LCLS Strategic Facility Plan.”

Great strides have been made with analysis of current XFEL data generation, as well as 
projections of future data generation, and many gaps have been identified in tools for 
compression, streaming data formats, and others. LCLS has formulated a description of data-
reduction requirements and a data flow that includes data reduction (Figure 8). Time is of the 
essence as upgraded facilities come online now and in the next few years. The community 
is aware that, although a difficult and unpopular task, it is critical for many to take action 
to address the gaps in data reduction and extraction planning and tools. In an ideal world 
all data would be saved while at the same time analysis would keep up with experiment. 
According to the talk from Jana Thayer from LCLS-SLAC, if all the raw data from LCLS-II were 
stored, data storage costs would top $250 million by 2026! However, without the resources 
or technology to save, manage, and access all the data that is generated, the pragmatic 
approach is to manage data reduction in a way that culls out what is important during an 
experiment, does an on-the-fly analysis where possible, compresses and saves what can be 
used for post-processing, and discards what is least likely to be of use in future analyses. Even 
for those small data experiments that are experiencing growth, many of the data-reduction 
and extraction planning techniques are applicable.

Gap 6: Experimental Design Allied to Research Questions

Experimental plans are usually generated manually, well before an experiment, and are 
based on sparse historical data, limited simulations, or intuition. However, with data archives, 
access to advanced simulations, and advanced statistical methods, these experiment designs 
can be made in a way that utilizes current knowledge and statistically guides the experiment 
towards areas of less certainty so that the search space of possible parameters is better 
known. Experimental plans can also guide experiments to areas of the search space that are 
more likely to produce experimental results in line with desired outcomes. Analytical software 
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stacks that include simulation, machine-learning, and data science technologies are lacking, 
yet would provide systematic, principled, and automated support for pre- and in-experiment 
design. Materials experiments tend to have a high level of complexity with usually multiple 
measurement/diagnostic capabilities and several experiment parameters that require 
modifications during an experiment. As repetition rates increase, automation will be used for 
fast analysis. Advanced and semi-automated experiment design will be needed to quickly re-
plan the experiment based on data taken so far.

5 Priority Research Opportunities

Workshop attendees converged on six priority research opportunities (PROs) for data science 
for materials science at light sources. The following subsections describe challenges and 
opportunities that motivate the PRO, the state of the art, a description of the PRO including 
assumptions and dependencies, the potential impact of the research, and a timeline for when 
success will impact materials science.

Before diving into the PROs it is useful to notice that each of them is made more challenging 
due to the increased experiment, detector, data rates, the need to support real-time decision 
making, the wide variety of experiments/facilities that need to be supported, and the 
resources available to provide the production-quality software required to earn the trust of 
experimental scientists. For brevity, these challenges will not be described in depth for each 
priority research opportunity. However, tackling these challenges will help enable light source 
science to reach its full potential.

It is also worth noting that although none of these PROs directly address Gap 4, “Software 
literacy (both languages and facility infrastructure),” it is clear that in order to pursue these 
priority research directions below and make a scientific impact via data science, software 
literacy initiatives are needed. Educational initiatives are not inherently PROs, but could be 
efficiently intertwined with workforce building and research efforts and targeted to support 
the PROs listed below.

PRO 1: Real-Time Decision-Making Tools: Automation, Data Analytics, Data-
Informed Decisions Beyond Hit/Miss, Visualization

To address Gap 3, “Missed Opportunities During Experiment,” real-time decision-making 
tools are needed. “Opportunities” in this context include being able to better utilize scarce 
experiment time in any of the following ways: make experiment parameter modification 
decisions more quickly, re-plan the experiment design based on current data, detect and 
recover from errors while there is still time, notice anomalies that might lead to a scientific 
discovery or show that the experiment is leading to an area of less certainty, or realize that 
enough data has been taken and it is possible to switch from one experimental sample or 
setup to a new one.
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Figure 9. Xi-CAM is a general platform for experiment data analysis, management, and visualization. (Image courtesy the LBNL CAMERA team 
[21]).

Again, the biology domain is further along in the use of real-time decision-making tools for 
popular light source experiments. During serial femtosecond crystallography experiments, for 
example, scientists are able to see in real time the development of an electron density map 
of a protein. They are then able to change samples as soon as they get the desired resolution. 
Real-time generic diffraction analysis tools are also commonly available at advanced user 
light sources; however, they do not give domain-specific analytics that are necessary for high-
level decision making.

For this research opportunity, tools that do a first-generation graph of experiment data 
are not sufficient to aid the scientist in obtaining the highest level of information that 
enables fast decision making. What is needed are tools that get to higher levels or meta-
levels, where experiment data are shown in aggregate and in a specific way that presents 
the experimentalist with a few select options along with associated uncertainties and/or 
likelihoods for success. Tools must allow for drill-down when necessary so that the scientist 
can see the supporting data when desired. These tools need to be able to incorporate 
multimodal data where necessary (e.g., experimental, science simulation, beamline 
simulation, historical data, current data, data from related materials, data from other 
experimental facilities, and others.). Targeted usage of machine learning, data science, 
statistics, image processing advanced mathematics, and algorithms will be necessary. 
Visual decision making with a human in the loop needs to also be backed up by rationale 
for the recommendations and associated uncertainties. Workflows that allow simulations, 
reinforcement learning, and big data analysis to be done on the fly are also needed here. 
Tools such as Xi-CAM (Figure 9) are an exciting start for this kind of analysis [21]. Although 
dependencies exist on research in multimodal analysis and efficient workflows, work in this 
priority research direction will impact science immediately.
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PRO 2: Codesign of Experiments with Data Analysis, End-to-End Planning, 
and Design of the Experiment

To address Gap 6, “Experimental Design Allied to Research Questions” and analytical software 
stack, research is needed to assist scientists in viewing their experiment holistically in terms 
of all the possible experiment runs that can be done and various parameters. Opportunities 
here are being more systematic about planning an experiment, going in with quantitative 
metrics on what is known and not known, (machine) learning from available experimental 
and simulation data to extrapolate to unknown data areas and plan accordingly, and being 
agile in re-planning, because the plans and learning are modifiable and automatable. A 
unique challenge here is the high-dimensionality of the input parameter space beyond 
what users can manage manually. The state of the art is that this area is in its infancy—few 
capabilities exist in this area. For example, it was difficult to find statisticians familiar with 
light source data and simulations to attend the workshop. Only recently (Winter 2018) the first 
Machine Learning for Particle Accelerators workshop was held, sponsored by SLAC. However, 
if statistical experimental design tools such as emulators can be developed, they can provide 
the needed real-time feedback necessary for success (See the feedback arrow in Figure 5).

Research in codesign of experiments with data analysis includes research in statistical 
emulation [22], statistical experimental design, beamline simulation, beamline emulation 
for possible feedback control, and end-to-end simulation of an experiment along with its 
analysis. End-to-end planning of the experiment includes parameter selection, data reduction 
planning, data analysis on the fly, data transfer speed planning, metadata capture, real-
time decision-making tools, loop back to control, and post-processing. It depends on the 
availability of historical data and beamline simulation technology as well as the availability of 
experiment metadata. This is an ambitious priority research area. It will be a while before all 
the dependencies can be put into place for it to make an impact scientifically because there 
are so many dependent, connected aspects. However, initial efforts in this area, as presented 
by Simon Billinge, are already revolutionizing materials discovery. Future efforts will greatly 
accelerate these advances.

PRO 3: High-Dimensional Data Visualization and Interaction

Light source experiment parameters and the resulting experiment data are both of higher 
dimension—high enough to be beyond human cognition without tools. New tools are needed 
to address Gap 1, “Tools for Exploiting High-Dimensional and Multimodal Data.” Challenges 
here are reconstructing images as needed from vast amounts of data, incomplete data, or 
noisy data. Time is another dimension that can make the visualization more challenging, but 
provides opportunities in making movies of experimental data. The current state of the art 
includes a number of advanced reconstruction algorithms and tools developed at Lawrence 
Berkeley National Laboratory (LBNL) [23] and Argonne National Laboratory (ANL) [24], as well 
as new tools becoming available, such as Los Alamos National Laboratory’s (LANL’s) Cinema 
[25, 26] (see Figure 10) and Ensight’s NEXUS [27] for allowing exploration of data along 
different dimensions.
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Figure 10. Example of a visualization tool for N-dimensional data from dynamic compression experiments at LCLS entitled “Cinema:Bandit” 
[25, 26].

Research in this area requires a continued push in advanced mathematics, algorithms, 
and machine learning to help with approximating solutions, or to help with making 
reconstructions faster. Usability is also an area of research here, because these tools will 
involve human interaction and require care in design so that they are intuitive, have low 
cognitive load when used, and be generally useful for a number of experiments. Flexibility in 
visual analytics is also important so that tools flex with the level of complexity desired as it 
evolves during an experiment. Tools should not just involve data analytics, but also physical 
models that help explain the data obtained. Visualization tools with a common application 
programming interface (API) or graphical user interface that can be used pre-experiment, 
during the experiment, and post-experiment are also an area for research, so as to reduce the 
number of tools an experimental scientist needs to learn and use.

PRO 4: Capturing Metadata Non-intrusively, Both Automatically and 
Manually, Prior to the Experiment

Capturing metadata non-intrusively addresses Gap 2, “Data, Algorithm, and Software 
Curation.”  Additionally, it supports most of the other PROs and the reproducibility of 
experiments. Metadata, which is data that describes other data, are essential to support 
activities, such as storage of data in databases. Metadata also allow access to various types 
of data science that rely on structured data, such as machine learning. Examples of metadata 
that need to be captured include information on x-ray parameters (photon energy, intensity, 
and others), sample parameters (type, temperature, preparer, and more), detector parameters 
(exposure time, binning, and region of interest), experimental parameters (pump or bias 
information, delay time, temperature, and other environmental parameters), and even 
information about the experimenters.
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The challenge is that data are highly dependent upon the conditions under which they 
are generated. Usually, these dependencies are recorded as metadata. When it comes to 
experimental data, it can be very difficult, if not impossible, to record of every possible factor 
involved in generating the data. Even then, for future access and sharing, consensus must be 
reached on metadata labels and how the metadata will be stored. Currently, most metadata 
are not recorded except for the most high-level metadata entered into spreadsheets or 
logbooks during an experiment, or extremely low-level metadata from the data acquisition 
system.

xpdAcq Goal: Capture Metadata Without Disrupting User Workflow

RunEngine call

ScanPlan
Experiment related information
(Exposure time, temperature...)

Sample
Sample specific information

(Chemical composition, structure...)

Beamtime
Top-level information

(Proposal number, PI last name...)

High quality metadata

Metadata that facilitates 
later data reductions
(Calibration parameter, 
dark frame reference...)

Experimenter-centric design
(Simplified syntax, 

recovery after crashing...)

Figure 11. Proposed method for capturing metadata by workflow provenance engineering proposed by Billinge et al. (Source: Billinge workshop 
presentation.)

Automatic and manual metadata capture in a nonintrusive way requires research in 
understanding metadata requirements. For automation-related metadata, what is needed 
to perform the experiments at the beamline? Some possibilities are the minimum viable 
metadata related to experiment conditions, metadata needed just to analyze the data, and 
metadata needed to link the experiment with the analysis. For domain/sample-related 
metadata, what data are needed for the larger context of the data—the material or the 
science data? Metadata are highly reliant on how the data will be used and what is needed for 
reproducibility.

PRO 5: Multimodal, Multiscale, Holistic Analysis via Open Data Resources 
and Search Tools

Increasingly, scientists are interested in using multimodal experimental data related to 
materials, which include different data types used together, previous data, data from related 
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experiments, experiments at different facilities, simulation data, and emulated data. Also, 
there is interest in data at different scales. This could be length scale of nanoscale versus 
macroscopic dimension. It could also be short- and long-time scale for a dynamic process 
for the material or combining data at different scales into a holistic analysis. Current state 
of the art in multimodal, multiscale, holistic analysis is that it is just emerging and materials 
databases are also just emerging [19]. They are not yet in wide use, however.

This is a challenging area of research, not just due to data fusion aspects, but also data 
availability. In order to successfully combine data, access to appropriate data is required. 
Open data resources will be increasingly needed as well as tools to search over data. 
Automated searches in the form of bots can help bring data to the analysis. Bots are programs 
that run automated tasks over the data, either internet data or other data sources. This PRO 
is in many ways dependent on PRO 4, “Capturing Metadata Non-intrusively,” because well-
abstracted metadata will be useful for open data resources and searchability tools.

6 Summary and Suggested Activities

In addition to the gaps and priority research opportunities identified, a number of supporting 
activities were suggested by the participants: 

•	 Follow-on workshop(s): A general follow-on to this workshop or a workshop exploring a 
particular gap or research opportunity.

•	 Activities that support the educational gap: Internships, summer schools, courses, 
hackathons.

•	 Funding opportunities (Laboratory Directed Research and Development [LDRD], Basic 
Energy Sciences [BES], Advanced Scientific Computing Research [ASCR], and others.) 
that mix people from backgrounds, such as science, computer science, statistics, and 
mathematics, so that they learn each other’s languages.

•	 Proposal process: Make building multidisciplinary teams a criterion for success and make 
data analysis readiness part of the criterion.

•	 Community platforms, such as data stores, code sharing sites, and more.
•	 Periodic town hall meetings either via video conferencing or in person at user meetings to 

discuss and brainstorm gaps and research topics and engage in community building.

This workshop on analyzing the gap between the rapidly advancing light sources and the 
availability and application of advanced data science tools demonstrated the urgent need 
to apply data science tools to x-ray materials studies. Exciting opportunities and challenges 
were identified and discussed. To all the participants it was obvious that these opportunities 
need to be addressed with the above activities or the full potential of materials discovery and 
innovation at advanced x-ray light sources will never be realized.
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Appendix A: Abbreviations, Acronyms, Initialisms

ANL Argonne National Laboratory

API application programming interface

APS advanced photon source

APS-U advanced photon source upgrade

ASCR Advanced Scientific Computing Research

AWS Amazon Web Services

BCDI Bragg coherent diffractive imaging

BES Basic Energy Sciences

BESAC Basic Energy Sciences Advisory Committee

BNL Brookhaven National Laboratory

CDI coherent diffraction imaging

CDI NN coherent diffraction imaging neural networks

CPA coherent potential approximation

DAC diamond anvil cell

dDAC dynamic diamond anvil cell

DFT density functional theory

DLSR diffraction-limited storage rings

DOE Department of Energy

ECB Extreme Conditions Beamline

Eu-XFEL European XFEL

HPC high performance computing

LANL Los Alamos National Laboratory

LBNL Lawrence Berkeley National Laboratory

LCLS Linac Coherent Light Source

LDRD Laboratory Directed Research and Development

LLNL Lawrence Livermore National Laboratory

MCMC Markov chain Monte Carlo
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MDF Materials Data Facility

MDI materials data infrastructure

NIST National Institute of Standards and Technology

NSLS-II National Synchrotron Light Source II

PRO priority research opportunities

RIXS resonant inelastic x-ray scattering

SLAC Stanford Linear Accelerator Center

SNL Sandia National Laboratory

XFEL x-ray free electron laser

XPCS x-ray photon correlation spectroscopy

XRD x-ray diffraction
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Appendix E: Keynote, Plenary, and Lightning Talk 
Abstracts

1.1 Keynote and Plenary Abstracts

1.1.1 Keynote: The Bright Future of X-Ray Science

Mike Dunne, LCLS/SLAC

The past decade has seen the emergence of x-ray free-electron lasers (XFELs) as a powerful 
new tool for studying the world at the atomic and molecular scale [1], with applications to 
quantum materials, catalytic chemistry, the science of extreme conditions, and structural 
biology, to name a few [2]. These facilities provide ultrashort x-ray pulses with a peak 
brilliance over nine orders of magnitude higher than synchrotron sources—allowing us 
to capture atomic-level detail on femtosecond timescales using a wide range of coherent 
imaging and spectroscopy tools.

This field is now entering another step-change, with the repetition rate of the sources 
increasing by many orders of magnitude to provide high average power beams that can track 
rare and transient phenomena, or study heterogeneous systems with stochastic properties, 
isolated defects or buried interfaces [3]. Repetition rates will increase from about100 hertz 
to 1 megahertz, in which each pulse is capable of delivering a multi-megapixel image of high 
dynamic range and rich scientific content. Our challenge is to develop x-ray cameras, sample 
delivery systems, and data acquisition and analysis tools to take full advantage of these 
remarkable new sources.

Billions of dollars are being invested in the U.S., Europe, and Asia to construct these next-
generation user facilities. Data generation could be over 1 terabyte per second, and will 
require real-time reduction and analysis of that data to dynamically guide the experiments. 
This will entail coordinated development of intelligent data extraction and compression 
techniques that are compatible with the preservation of high-fidelity information. Methods 
are needed to pipe these data to exascale computers with numerical tools to take full 
advantage of accelerated architectures. Artificial intelligence algorithms need to be developed 
and validated that can help identify and interpret critical information in the data, along with 
user-friendly tools to enable utilization by a broad scientific community.

The scientific impact of success will be profound, providing a wealth of fundamental 
scientific insights that will benefit societal priorities from human health to renewable energy 
technology, national security, and our understanding of the cosmos.

This talk will provide an overview of the current state of the field and the pace and nature 
of the developments underway in the U.S. and around the world. It will present examples 
of the scientific opportunities and the approaches to data analysis that are being explored. 
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This is a rapidly growing field in which entirely new approaches to data analysis and facility 
optimization are required. As such, it is ideally suited to those new to the field and those who 
look forward to a career full of new challenges and broad impact.

References
[1]	 W. White, A. Robert, M. Dunne, J. Synchrotron Rad. 22, 472–476 (2015) and references 
therein.
[2]	 C. Bostedt et al., Reviews of Modern Physics 88, 1 (2016).
[3]	 M. Dunne, Nature Review Materials (2018), doi:10.1038/ s41578-018-0048-1.

1.1.2 Plenary: Sequential Experimental Design for Model Calibration

Derek Bingham, professor, Department of Statistics and Actuarial Science, Simon Fraser 
University

In many branches of physical science, when the complex physical phenomena are either too 
expensive or too time-consuming to observe, deterministic computer codes are often used 
to simulate these processes. Nonetheless, true physical processes are also observed in some 
disciplines. It is preferred to integrate both the true physical process and the computer model 
data for a better understanding of the underlying phenomena. In this talk, methodology is 
presented for selecting optimal experimental or simulation trials designs based on integrated 
mean squared error that help us capture and reduce prediction uncertainty as much as 
possible. The aim is to use this methodology within a fast model calibration framework so 
that the methodology can be deployed in real time.

1.1.3 Plenary: Data-Driven 4D X-Ray Imaging of Nanoscale Dynamics

Mathew Cherukara, Assistant Scientist, Center for Nanoscale Materials, Argonne National 
Laboratory

Observing the dynamic behavior of materials can reveal insights into the response of 
materials under nonequilibrium conditions of pressure, temperature, and mechanical load. 
Such insights into materials response under nonequilibrium are essential to design novel 
materials for catalysis, low-dimensional heat management, piezoelectrics, and other energy 
applications. However, material response under such conditions is challenging to characterize 
especially at the nano to mesoscopic spatiotemporal scales. Time-resolved coherent 
diffraction imaging (CDI) is a unique technique that enables three-dimensional imaging of 
lattice structure and strain dynamically. In this talk, I will present some examples of our recent 
work on imaging and modeling of phonon transport and lattice dynamics in nanomaterials 
under a variety of external stimuli. I will highlight the use of experimentally informed models 
that leverage large-scale computational resources available at Argonne. These experimentally 
informed models were used to provide information complementary to the imaging 
experiment, and at spatio-temporal scales inaccessible to the experiment.

With the APS upgrade (APS-U) it will become possible to image at similar resolution to 
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what is attainable today with significantly shorter acquisition times, or conversely acquire 
significantly higher resolution data using the same acquisition times as today. Either route 
will create challenges associated with data/memory that will necessitate unconventional 
approaches to image recovery. I will describe our work in the use of deep generative neural 
networks (CDI NN) in accelerating the analysis of, and potentially increasing the robustness 
of image recovery from x-ray diffraction data. Once trained, CDI NN is thousands of times 
faster than traditional phase retrieval algorithms used for image reconstruction from coherent 
diffraction data, opening up the prospect of real-time 3-D imaging at the nanoscale.

1.1.4 Plenary: Impact of Data Reduction on Data Science at LCLS-II

Jana Thayer, Department Head for LCLS Data Systems, LCLS/SLAC National Accelerator 
Laboratory

Data systems for the future LCLS will need to handle very high data throughputs ranging from 
hundreds of gigabytes per second to over a terabytes per second. Even assuming a favorable 
cost and density scaling for network, storage, and processing technologies over the next few 
years, the costs associated with moving, recording, and processing these amounts of data are 
prohibitive. We believe that applying on-the-fly data reduction effectively manages the costs 
of the data systems and mitigates processing times. We present a description of the LCLS-II 
Data System and associated inline data reduction pipeline that provides a configurable set of 
tools, including feature extraction, lossless data compression, and event veto to reduce the 
volume of data written to disk while still producing the same analytical results. Our strategies 
for reducing the data in a highly changeable operations environment and the effect of these 
strategies on the design of the data system and on the results of the data analysis will be 
discussed.

1.1.5 Plenary: Amazon Cloud Resources as Part of Scientific Workflows

Kevin Jorissen, Business Development Manager, Scientific Compute (SC) group, Amazon Web 
Services

This talk will get scientists thinking about how they can benefit from the virtually limitless 
resources Amazon Web Services (AWS) offers them for computing, storage, and data 
analytics. We will start with the general principles that make the public cloud a good 
match for today’s research challenges, from shortening the time to prove or disprove a 
new idea, to collaborating on massive data sets. Next, we will review examples of current 
and upcoming research in the cloud across several science domains from astronomy to 
genomics, demonstrating the benefits of new technologies and of scale. We’ll then visit key 
cloud services that will be the building blocks of most scientists’ work: using AWS Elastic 
Compute Cloud (EC2) for setting up personal compute clusters with hundreds of scientific 
applications; using AWS Batch and AWS Lambda Serverless to create automated pipelines 
to analyze incoming data; and Amazon SageMaker to democratize machine learning, so that 
applied scientists who’ve used a few Python scripts for analysis can suddenly take advantage 
of massive GPU clusters and optimized deep learning frameworks to train highly accurate 
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and publishable models. We’ll close out with some of the ways AWS is engaging with research 
science and how to get started. Finally, there’ll be time for the community to identify its 
greatest challenges that AWS could help with—from handling unprecedented volumes of 
detector output, to giving applied scientists more power to analyze their measurements, 
or any other needs. The speaker has a background in computational materials science and 
worked for years on the FEFF code for x-ray absorption spectroscopy at the University of 
Washington.

1.1.6 Plenary: CAMERA: New Mathematics for Enabling the Next Generation 
of Experimental Science

Jeffrey Donatelli, Computational Research Scientist, Mathematics Group, Deputy Director of 
the Center for Advanced Mathematics for Energy Research Applications (CAMERA), Lawrence 
Berkeley National Laboratory

Recent technological advancements have allowed new experiments to make more sensitive 
measurements, collect more data, and study more complex phenomena than ever before. 
However, accurately and efficiently analyzing the data from these experiments is increasingly 
becoming a major bottleneck in enabling new scientific advancements. There is a dire 
need to develop new targeted mathematics and algorithms to accelerate data processing 
and analysis, handle increasing amounts of data, improve accuracy and resolution, and 
model new kinds of physical behavior. In this talk, I will provide an overview of several 
new mathematical tools being developed at the Center for Advanced Mathematics for 
Energy Research Applications (CAMERA) aimed at tackling these challenges. In particular, 
I will describe new machine learning techniques that can greatly decrease the number of 
learning parameters and training data requirements, a modular approach to modeling and 
reconstructing molecular structure from noisy, complex, and incomplete data, and tools for 
enabling autonomous and real-time experiments.

1.1.7 Plenary: Materials Discovery Is More Than Materials Prediction: The 
Role of Light-Sources in Addressing the Materials Synthesis Data Gap

Simon Billinge, Professor of Materials Science and Engineering and Applied Physics and 
Applied Mathematics at Columbia University and Scientist at Brookhaven National Laboratory

The discovery of new materials involves prediction of novel materials with useful properties. 
However, beyond that, we need also to reliably predict the synthesis recipe that we will use 
to make those novel materials. This is an extremely difficult challenge because, especially for 
inorganic materials, there currently is no computational physics model for synthesis, which is 
an inherently kinetic, non-thermodynamic and irreversible process. I will describe how we can 
take a machine learning approach to the problem, but critically we are missing experimental 
synthesis data for the algorithms to be trained on. There is a critical role for light-sources, 
coupled to advanced computation, to play in rectifying this problem. I will discuss current 
progress, but mostly the possibilities and challenges.
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1.2 Lightning Talks

•	 Simultaneous Sensing Error Correction and Tomographic Inversion Using an Optimization-
Based Approach, Zichao (Wendy) Di

•	 Provenance-Enabled Sample Measurements for Multi-Modal Analysis and Predictive 
Synthesis, Line Pouchard

•	 Data and Computing Needs for X-Ray Imaging at National Synchrotron Light Source II 
(NSLS-II), Garth Williams

•	 Adaptive Machine Learning for Automatic Control of Particle Accelerator Beams, Alexander 
Scheinker

•	 Current and Future Plans for the Advanced Light Source, Alexander Hexemer
•	 Joint Ptycho-Tomography Reconstruction Through Alternating Direction Method of 

Multipliers, Selin Sariaydin
•	 A Stream Processing Framework for High-Performance Computing, Shantenu Jha and 

Andre Luckow
•	 Designing Characterization into Materials Discovery with the Materials Project, Shyam 

Dwaraknath
•	 Software Platforms to Enable Materials Data Science at Scale, Bryce Meredig
•	 More with Less, Bridging Gaps from Measurement to Discovery, Robert Tang-Kong
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Appendix F: Experiment Sessions
The Gap Analysis workshop focused on six key experiments of interest for materials science. 
For each of these experiments, a domain expert gave a talk with discussion afterwards. The 
following subsections summarize these talks and discussions and address the materials 
science discoveries enabled by the experiments, experiment setup, experiment data 
requirements, data analyses and associated simulations, data science workflow, and 
opportunities and challenges for these experiments with upgraded light sources.

1 X-ray Photon Correlation Spectroscopy (XPCS)

Claudio Mazzoli, speaker; Kristin Kleese Van Dam, moderator; Christine Sweeney, author

X-ray Photon Correlation Spectroscopy [1,2] is used to investigate system dynamics down 
to nanometer and atomic length scales. X-ray Photon Correlation Spectroscopy (XPCS) is an 
ideal tool for observing the equilibrium dynamics of atomic-scale fluctuations that occur near 
phase transitions, which helps with understanding of phase transition dynamics of magnetic, 
ferroelectric and ferroelastic materials, dynamics and local ordering of glassy materials, and 
nonequilibrium dynamics of soft condensed matter glassy systems.
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Figure A.F.1. Speckle pattern from porous silica glass (Vycor). Dark (blue) colors correspond to regions of low intensity. The shaded area (highest 
intensity) corresponds to a region of interest for analysis [1].

When coherent light is scattered from a disordered system, the scattering pattern presents 
a peculiar grainy appearance also known as speckles, as illustrated in Figure A.F.1. These 
speckles originate from the exact position of all scatterers within the system under 
investigation. XPCS characterizes the temporal fluctuations in speckle patterns. From these 
fluctuations, insight into the dynamic behavior of the system can be revealed.
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Figure A.F.2. Example setup for XPCS measurements.

The setup of a typical XPCS experiment is shown in Figure A.F.2. A perfect crystal 
monochromator or a short mirror are located away from the source in horizontal reflection 
geometry. A second mirror is installed in vertical reflection geometry downstream of the first 
mirror (monochromator) in order to reduce the harmonic content. Beam-selecting pinholes of 
different diameters are installed downstream of the second mirror.

Data rates for each XPCS experiment at National Synchrotron Light Source II (NSLS-II) at BNL 
typically reach tens to hundreds of gigabytes per hour and several terabytes per day [3]. Data 
are both structured and unstructured. In a typical experiment, 20,000 speckle patterns are 
recorded.

As the scatterers fluctuate over time, the resultant speckle intensity will change and time 
autocorrelation functions of the speckle fluctuations will reveal the scattering vector-
dependent timescales associated with the motion of the scatterers. In a streaming fashion, 
data are analyzed via a statistical analysis of the variation of the speckle pattern as a function 
either of elapsed time or of an externally varied quantity, such as magnetic field, electric field 
or temperature. Scikit-Beam offers an XPCS data analysis package [4]. Map-reduce schemes 
are also being used to conduct the analysis in parallel on HPC resources [5].

Facility upgrades that increase coherent flux will enable nanosecond-resolution studies 
of nanometer-scale fluctuations and, potentially in certain instances, time resolution to 
100 picoseconds for correlations detected with the duration of a single x-ray pulse [6]. This 
increase will help match the timescale of the XPCS measurements to the physics of the 
system. XPCS studies at higher photon energies will provide access to the interior of complex 
materials and to resonant edges. 
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1.	 G. Grübel, A. Madsen, A. Robert, X-Ray Photon Correlation Spectroscopy (XPCS), Soft 
Matter Characterization, edited by R. Borsali & R. Pecora, 953–995. Heidelberg, Springer.
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2 Resonant Inelastic X-ray Scattering (RIXS)

Diego Casa, Speaker and Author; Kristin Kleese Van Dam, Moderator

Resonant inelastic x-ray scattering focuses on correlated electron system properties of both 
technological and fundamental importance, i.e., superconductivity, quantum computing, 
exotic ground states, and others. Resonant Inelastic X-ray Scattering (RIXS) can use very small 
(10 micrometers) samples and extreme/in situ/in operando conditions. RIXS experiments are 
element- and orbital-specific. The instrument setup is mostly not a subject of the experiment; 
typically, the setup involves the choice of sample environment, energy resolution, and 
measurement parameter space.

Presently, experiment data requirements are modest, but will increase significantly and 
will benefit from solutions developed for other more data-intensive techniques. During 
the experiment, data analysis includes simple peak fitting, background subtraction, and 
visualizations. The pre- and post-experiment uses simulated RIXS spectra from cluster density 
functional theory (DFT) and coherent potential approximation (CPA) calculations.
The data science workflow is currently disjointed, per above. This dilates the turnaround 
time from conception to final analysis to many months. Scientists do not currently have the 
capacity to make data-informed decisions during the experiment other than the presence or 
absence of obvious spectral features.

Some opportunities with upgraded light sources are to upgrade the data infrastructure to 
accommodate faster readout (approximately 300 kilohertz) from multichannel detectors with 
on-the-fly processing. The advent of time-resolved pump-probe experiments at XFELs could 
possibly provide live simulation support (e.g., DFT, CPA) and statistical tests (e.g., primary 
component analysis [PCA]) for efficient counting times.

3 Bragg Coherent Diffraction Imaging (BCDI)

Ian Robinson, speaker and author; Richard Sandberg, moderator

https://link.springer.com/referenceworkentry/10.1007/978-1-4020-4465-6_18
https://link.springer.com/referenceworkentry/10.1007/978-1-4020-4465-6_18
http://journals.iucr.org/j/issues/2007/s1/00/cj6012/cj6012.pdf
http://journals.iucr.org/j/issues/2007/s1/00/cj6012/cj6012.pdf
http://journals.iucr.org/j/issues/2007/s1/00/cj6012/cj6012.pdf
http://journals.iucr.org/j/issues/2007/s1/00/cj6012/cj6012.pdf
http://journals.iucr.org/j/issues/2007/s1/00/cj6012/cj6012.pdf
https://github.com/scikit-beam/scikit-beam
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Bragg coherent diffraction imaging (BCDI) provides opportunities for discovery of small-scale 
core-shell systems, with possibility of one phase stabilizing the other. BCDI is able to track 
these changes on the nanoscale and suggests opportunities for scaling up to macroscopic 
dimensions. There are some examples known already of oxide hidden phases living only 
nanoseconds and an electronically ordered excited phase of fullerene C60 lasting only 
femtoseconds. These are ripe for materials discovery in the time domain.

There are experimental challenges right now to reach the low temperatures where quantum 
materials become interesting. This is because of extreme sensitivity to vibrations. There are 
also challenges to perform BCDI under pressure. Here, the problem is the complex refraction 
properties of diamonds and beryllium when they are deformed under pressure, they turn into 
lenses that introduce strong near-field distortions of the x-ray optical wavefronts entering and 
leaving the sample. Dynamic compression at an XFEL facility may be a way to mitigate the 
problem.

Experiment data requirements are not too stringent for synchrotron operations because data 
sets are usually under (256)3 and rarely bigger than (512)3. XFEL data are a different situation 
because it is necessary to filter the data stream post facto. Therefore, keeping all diffraction 
shots is required to eliminate the bad ones, unless a simple online veto can be implemented. 
Data tend to be fairly sparse, so compression should be effective.

Simulation is always valuable to save time with the measurements, especially with scarce 
facilities like XFELs. Analysis is done through iterative phase retrieval algorithms requiring 
hundreds to thousands of fast Fourier transforms, so even for modest memory sizes (typically 
between 2563 and 5123), parallelized codes are needed for processing on multiple cores.

Complete BCDI experiments could be performed at an XFEL in one hour. We need to consider 
the access model in an altogether different way; once it is accepted that the throughput of 
an XFEL is inherently faster than the human thought process, we must simply accept that 
thinking during beamtime is no longer allowed. Instead of the synchrotron model of massively 
parallel access with up to 80 beamlines fed simultaneously, we must evolve towards operating 
with different levels of time multiplexing.

For materials science applications, one could do simple experiments that do not involve setup 
changes of the machine beyond those which can be fully automated. A standard pump–probe 
single-shot diffraction experiment could be performed at fixed x-ray wavelength with a fixed 
detector bank at a standard distance from the sample. In order to examine a wide variety 
of samples, the detector must span a wide enough range of Bragg angles. Rough estimates 
suggest that that 90 percent of experiments can be done at a 0.138 nanometer wavelength 
(9 kiloelectron volts) and 2 theta = 35 degrees. This follows from the lattice spacings of most 
materials being set by the ionic radius of common elements like oxygen. The number of pixels 
must be large enough to oversample the diffraction from crystals up to some maximum size, 
which we take to be 1micrometer. Bragg diffraction from crystals of this size will come close 
to saturating the dynamic range of an analog detector, which can be made as high as 105. 
This requires a detector of 2,500 pixels in the radial direction and as many banks as possible 
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around the circumference of the Debye–Scherrer cone.

4 Dynamic X-Ray Diffraction at High Pressures (Dynamic XRD)

Arianna Gleason, speaker and author; Richard Sandberg, moderator

Understanding the processes that dictate physical properties in condensed matter, such 
as strength, elasticity, plasticity, and the kinetics of phase transformation/crystallization, 
requires studies at the relevant length-scales (e.g., interatomic spacing and grain size) and 
time-scales (e.g., phonon period). The material science discoveries enabled by ultrafast x-ray 
diffraction (XRD) combined with a dynamic driver include: i) phase transition kinetics, ii) 
phase transformation pathway, and iii) then digest the results of (i) and (ii) and contextualize 
it to generate a predictive model for designing materials functionality.
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Figure A.F.3. Schematic of dynamic x-ray diffraction experiment to understand the high pressure phases of materials. This experiment was to 
study high pressure phases of quartz conducted at the LCLS-MEC hutch [1, 2].

Experiments performed at the Matter in Extreme Conditions end-station at the Linac 
Coherent Light Source, SLAC, combine a laser-driven dynamic compression pump and x-ray 
free electron laser (XFEL) probe to explore nonequilibrium transformation pathways and 
mechanisms. A schematic of these pump-probe experiments is shown in Figure A.F.3 [1, 2].

We sequentially collect XRD patterns on downstream detectors (CSPADs) during the passage 
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of a shock wave. Each XRD pattern is collected at a different probe time with respect to 
compression and release waves, therefore providing time-resolved lattice-level structural 
information as a function of pressure and temperature. This allows us to map out pressure-
temperature-time-phase for a material.

Currently, dynamic XRD data volumes at LCLS are 10-100s gigabytes per run where a run is 
collected in seconds to minutes. This will increase by orders of magnitude with the LCLS-II/HE 
upgrades. Similarly, data rates today are at 10 gigabytes per second, which will also increase 
by orders of magnitude with the LCLS-II/HE upgrades. An experiment duration is typically 
one to five shifts, where a shift is 12 hours of beamtime. Standard data format for diffraction 
is often in tiff format. Data fusion is absolutely needed—meaning assimilation between 
data types like diffraction + imaging + spectroscopy + velocimetry + real-time visualization. 
Prediction information and streaming analyses are also needed.

To stay at the frontier of dynamic-XRD and materials science in general, there are five tasks 
that should be implemented to guarantee success in materials innovation and prediction:

•	 Pre-experiment planning
	 -Synthetic data for structure prediction; XRD integrated traces
	 -X-ray source/beamline modeling
•	 Real-time crystallography toolkit
	 -New peak/features for phase assignment; symmetry, space group
	 -Phase diagram visualization
•	 Real-time transformation/deformation mechanism visualization
	 -Twinning prediction
	 -Texture prediction
	 -Mosaicity prediction
•	 Synergy of data sets
	 -XRD + spectroscopy + imaging for new materials properties correlations
•	 Leveraging time-resolution
	 -Kinetics models (e.g., JMAK)
	 -Nucleation mode tied to MD/DFT and synthetic data

One of the biggest opportunities and challenges for dynamic-XRD in the future will be detector 
capability/innovation. There are several components needed for cutting-edge materials 
science research:

•	 Increased frame rates: gated detectors
•	 Contiguous angular and azimuthal coverage
	 -Less tiling (mitigate dead space)
	 -Larger active area (goal: 8 centimeters by 8 centimeters)
	 -Mitigate background fluctuations
•	 Texture analysis
•	 Diffuse scatter for melt/amorphous structure (amorphous-amorphous transitions; short-

range order via PDF to get nearest-neighbor information)
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•	 Increased dynamic range
•	 Smaller pixel size (goal: 10-25 micrometers)
	 -Higher fidelity diffraction character

References
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5 High Pressure Diamond Anvil Cell X-Ray Diffraction (XRD with DAC)

Zsolt Jenei, speaker and author; Garth Williams, moderator

Many materials in both nature and technological manufacturing are produced under dynamic 
conditions, such as the ejecta from a meteoritic impact or the formation of a liquid metal 
(metallic glass) by rapid quenching. Probing these processes is therefore essential to help 
us understand our natural environment and to improve technologically relevant materials. 
The short time scales of these processes offer the possibility of significant deviation from 
conventional equilibrium phase studies, such as the existence of meta-stable phases. In 
addition, studies of pressure-induced phase transitions hold the promise of uncovering 
rich new physics and phenomena, such as the rate-dependent morphology previously 
observed in water. The dynamic diamond anvil cell (dDAC) plus third-generation synchrotron 
enable studies of dynamic phenomena in material occurring on the scale of few hundred 
microseconds (phase transition, diffusion, deformation, crystal growth).

The experimental setup builds on general-purpose high pressure beamline equipment. With 
the additional use of piezo-actuator driven compression, where the compression drive can be 
arbitrarily tailored to the users’ desire by defining the 1-10 volt driving voltage. We have the 
dDAC implemented at both HPCAT, Sector 16, at the Advanced Photon Source and the Extreme 
Conditions Beamline (ECB), P02.2 at PETRA III, DESY. ECB has the advantage of a pair of GaAs 
LAMBDA detectors working at a 2 kilohertz frequency; shifting these by a half period gives us 
an effective time resolution of 250 microsecond.
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At current third generation x-ray light sources, the data acquisition rate at a typical 
experiment is about 6,000-10,000 diffraction files per day.

Data analysis basic steps:
•	 Convert nexus files to tiffs (missing software to integrate XRD patterns directly from nexus);
•	 Integrate the diffraction patterns;
•	 Fit peaks to determine pressure, crystal structure, equation of state (EOS).

As it is, currently we do not have the tools to evaluate data in real time. Preliminary analysis 
would have to focus on pressure evolution as a function of time (as shown in Figure A.F.4 in 
the bottom right panel.)

Upgraded light sources are a great opportunity to expand understanding of phase transition 
kinetics, with brighter, more coherent probing x-rays, faster detectors, and new techniques. 
However, from the standpoint of data quantity, this presents great challenges that need to be 
addressed to take full advantage of the presented possibilities. For example, in the very near 
future at the EU-XFEL HED station the XRD data acquisition rate is expected to reach 3,500 
diffraction patterns per second; this will increase the amount of data by one to two orders of 
magnitude.
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6 High Energy Diffraction Microscopy

Reeju Pokharel, speaker and author; Garth Williams, moderator

Crystallographic grains, defects, and interfaces at the mesoscale are known to influence 
material properties and performance of polycrystals. Third and fourth generation light 
sources have opened up immense opportunities for 3-D mesoscale science. High-energy 
x-ray diffraction microscopy (HEDM) is one such technique developed at the third generation 
synchrotron source that affords nondestructive characterization of 3-D polycrystalline 
materials at high spatial and orientation resolutions (approximately 2 microseconds and 
approximately 0.01 degree). A single sample can be measured and remeasured multiple times 
under different thermo-mechanical conditions, enabling microstructure evolution studies. 
Such data sets are invaluable for dynamic mesoscale model development and validation.

HEDM experiments are performed in a transmission geometry, where a monochromatic 
x-ray beam illuminates a cross-section or a volume of the sample and also sets of grains that 
satisfy the Bragg condition produce a diffracted beam on a flat panel detector located at 5-10 
millimeters (near-field setting) or 1-2 meters (far-field setting) away from the sample. The 
sample is rotated about the axis perpendicular to the incoming beam and diffraction data are 
collected to ensure diffraction from all the grains in the illuminated volume are recorded. This 
is crucial for accurate data inversion.

Extracting 3-D microstructure information from a measured diffraction pattern is an inverse 
problem.  Like any inverse problem, it is highly under-determined. Therefore, usually a 
large amount of redundant data from multiple rotation angles are required to accurately 
reconstruct microstructure from diffraction patterns.

HEDM data inversion entails determining crystal orientations of grains in a polycrystalline 
sample that gave rise to the observed diffraction spots on the 2-D detector. Current approach 
performs forward diffraction simulations of the experiment and a brute force search is 
conducted to determine crystal orientations and locations that produce the diffraction images 
that best match the observed patterns. Instrument geometry of the experiment needs to be 
known before performing the diffraction simulations of the sample. Therefore, a calibration 
sample, usually a single crystal, is used for determining the instrument parameters.

A major limitation faced by HEDM is that the reconstruction of 3-D material microstructures 
from diffraction data is an extremely lengthy process, sometimes requiring up to a week on 
many thousand core computer clusters for a single sample. This highly limits the possibility of 
any feedback during a typical beam line experiment, which would be very useful for steering 
and driving experiments, especially under dynamic conditions. This problem will only 
exacerbate with increasing data collection rates with upgraded light sources. Therefore, there 
is a growing need for rapidly analyzing diffraction data during in situ or ex situ experiments.
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Appendix G: Data Science Techniques

The Gap Analysis workshop focused on eight key data science techniques of interest for light 
source experiments involving materials science. For each of these techniques, an expert 
gave a talk with discussion afterwards. The following subsections describe the materials 
science discoveries enabled by data science techniques, details of the technique, technique 
requirements, experiments and associated simulations using the technique, the workflow 
that uses the technique, and opportunities and challenges for these techniques with 
upgraded light sources.

1 Pre-Experiment Machine Learning

Ryan Coffee, speaker and author; Alexander Sheinker, moderator

One of the opportunities that high rate sources and detectors unlock is the ability to rapidly 
scan multidimensional parameter spaces. The dimensionality is growing for both synchrotron 
sources as spectral imaging, for example, and for FEL sources as dynamics imaging. Allowing 
users to visualize in real time how their particular representation of the physical observable 
is being explored will enable not only data compression to be tailored to the information the 
user actually wants, but it will also allow her or him to make decisions about what regions of 
parameter space require more statistics.

Techniques that represent the error landscape could make suggestions to users regarding 
regions of parameter exploration.

Container image repositories that are consistent across user facilities and simulation hosting 
leadership scale computing facilities. Actually, given the new user facility model for the Large 
Synoptic Survey Telescope (LSST)  (see Carlo discussion), could the light sources encourage 
a consistent hashing of simulations that could be also added to the related experimental 
metadata?

Simulations could also be served via container and use a similar image ID hash to track 
simulation provenance as envisioned for the facility experiment data.

The workflow would be that the user has sample data or simulation data provided by the 
facility or community HPC cloud. He or she builds a Docker container on a home institution 
machine from an image sourced from the facility image repository that connects to the 
sample data. That image is the sandbox image used for exploring with simulation or sample 
data which interesting data representations are showing the effect the user is hoping to 
see. The user is then encouraged to port the sandbox model (via git or another system) to a 
technique-specific container, e.g., lcls-tmo/electron_spectroscopy-latest. This image then 
embeds its image ID hash into the model that the user develops inside the container. When 
the user submits the proposal, he or she could include an image that demonstrates how 
that model sufficiently transforms the sample raw data into compressed and physically 
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meaningful pre-processed data. This also shows how the proposed level of uncompressed raw 
data can be used to validate the model while staying within the data rate budget of the facility. 
If the proposal is granted time, then the model container will be trimmed into a lite model 
and receive a new image hash and be compiled against the beamline computer hardware or 
data reduction stack. When the experiment runs, the user provided models, or stock facility 
models, will have their hashes added to the metadata that follows all raw and reduced data 
files produced in the experiment.

The opportunity with upgraded sources and detectors is that users can place the statistics of 
shot accumulation into meaningful regions of parameter space. This will happen since the 
user will have a more refined picture of the information contained in the data and will more 
densely store that information along with the algorithms that were used to compress the raw 
data.

2 Pre-Experiment Modeling and Simulation

Turab Lookman, speaker and author; Thomas Proffen, moderator

As experimental facilities become more complex and offer deeper insight into what makes 
materials work, a change from a cook-and-look approach still used at many scattering 
facilities needs to make room for hypothesis-driven experiments. This will require the ability 
to create and run materials models (e.g., atomistic, first principles, and others) as well as 
being able to evaluate the signal expected from the experimental instrument selected. This 
will not only allow researchers to demonstrate feasibility of an experiment, but also allow 
easier real-time monitoring during the experiment.

Pre-experiment needs will also extend to experiment planning, including possibly suggesting 
materials to be investigated based on gaps in data sets used for machine learning related to a 
desired application, for example.

Details of pre-experiment modeling and simulation will depend on the science area and 
particular instrument, good materials, and instrument models with well-established ranges of 
applicability. In other words, you need to know where the models work and do not work.

Requirements will depend on the science area, instrument details, and the level of data 
science/technique expertise expected from the user and/or available from the instrument 
team. The added complexity of pre-experiment is the fact that access might be needed before 
the users are on site and able to interact in person with the beamline team. Some access 
to pre-experiment capabilities will also be needed as part of experiment planning, in other 
words, before an approved proposal exists.

The challenge for simulations might be matching the fidelity and modeling approach to each 
proposed experiment. However, this is not decoupled from post-experiment modeling needs.
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3 In-Experiment Visual Analytics and Decision Making

James Ahrens, speaker; Peer-Timo Bremer, moderator and author

As discussed above, we expect the data rates to increase drastically with new facilities 
and capabilities. While that represents fantastic opportunities for new discoveries it also 
constitutes the danger of wasting a significant amount of resources through problems with 
experiment setup, suboptimal configurations, and more. In the past, these kinds of problems 
could often be corrected on the fly, for example by manually checking the first couple of shots 
and adjusting the experimental setup accordingly. However, with the increased data rates 
these types of check are becoming increasingly difficult or even impossible. Instead, we need 
a new approach that enables near real-time autonomous and/or user-guided decision making 
from massive data streams. Both the autonomous and human-in-loop approaches will likely 
share a joint data management framework capable of providing near real-time access to the 
experimental data as well as sufficient computing resources. The difference will be that the 
autonomous branch will rely on pre-determined models and statistics to automatically adjust 
the parameter within some pre-defined set of possibilities. The human-in-loop approach 
on the other hand will provide more generic analysis capabilities to the experts, ideally 
allowing a wide variety of analysis approaches to be executed on the fly. These will aim for 
the truly unexpected occurrences in which an experiment produces unforeseen results and/
or problems. For the latter, visualization and/or visual analytics approaches will be crucial to 
enable both data exploration as well as to provide intuitive insights into otherwise black-box 
models.

The necessary techniques to enable decision making, automatic or otherwise, will include a 
wide variety of statistical, feature extraction, and machine learning approaches, in particular 
those applicable to complex high-dimensional data. For the automatic analysis, the focus 
will be on techniques able to ingest large quantities of data quickly as well as those that 
provide uncertainty bounds to confidently drive an autonomous system. On the other hand, 
the human-in-the-loop approaches will rely on interactive visual analytics to quickly explore 
data as it is being collected. The goal will be to maximally support the intuitions and prior 
knowledge of expert users in adjusting a running experiment. Both branches of decision 
making will rely on an underlying data management and analysis framework that can quickly 
and flexibly deliver subsets of data to the analysis and/or visualization pipeline.

The key challenges will be the size of the data as well as the black-box nature of many 
current analysis routines. The size of the data will stress not only the underlying storage 
infrastructure, but also will overwhelm virtually all existing analysis and visualization 
approaches. For example, few interactive visualizations will scale beyond tens of thousands 
of samples, neither in terms of computational power nor in terms of their visual encoding. 
This means we are not able to interactively draw and select from a scatter plot with millions of 
points, nor will such a plot show anything past an uninterpretable, dense set of points. Similar 
problems exist with many advanced models, i.e., fitting traditional Gaussian Process models 
to millions of points is not feasible.
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Another, often overlooked challenge in decision making is the black-box nature of the 
underlying models. In order to adjust an expensive and carefully planned experiment on-the-
fly users will require a high confidence in whatever model or predictor they are being offered. 
In post-processing, such confidence often comes from careful re-analysis, cross-validation, 
and others. However, this type of analysis is not feasible for real-time decisions with partial 
data. Few users will comfortably adjust parameters based on a computational model that 
appears opaque and to some extent arbitrary. Instead, we need more interpretable models 
and ideally, visualization to provide users with the confidence to make decisions. This will 
include explicit representations of the uncertainty in the relevant models as well as new visual 
representations of otherwise abstract data, i.e., more interpretable dimension reductions, 
topologically accurate representations, and more.

4 In-Experiment Statistics and Emulation

Devin Francom, speaker and author; Earl Lawrence, moderator

Understanding some of the more complex aspects of an experiment via simulation is 
typical in modern science, including at advanced user light sources. Experimental results 
are used to assess and validate simulators that encode current scientific understanding. 
Combining simulated and experimental data can be powerful, but requires careful treatment 
of uncertainty. Statistical approaches to solving inverse problems (i.e., inferring simulator 
parameters based on experimental data) aim to characterize uncertainty via probability. 
Bayesian statistical methods allow for seamless propagation of uncertainty. These 
approaches can be used for both cheap and expensive simulators, though an expensive 
simulator often necessitates the building of a fast statistical surrogate for the simulator, called 
an emulator. Emulators need to be fast to evaluate, accurate for any combination of possible 
simulator input, and sufficiently flexible to capture complexities of the simulator. In many 
cases, a good emulator can be built based on hundreds to thousands of simulations.

Emulators are often built on reduced dimension summaries of high dimensional simulator 
output. When experimental data can be similarly reduced, inverse problem inference can 
take place in a reduced dimension space. Dimension reduction is typically a problem-specific 
bottleneck in this case. A second bottleneck is the usual approach to inference, which is 
based on Markov chain Monte Carlo (MCMC). This approach can be too slow when the analysis 
results are intended for use in planning the next experiment. This sequential design problem 
is a third area of interest at these experimental facilities.

One in-experiment question we are trying to answer is what the optimal next experiment 
should be (sequential experimental design). Some other examples of statistics activities in-
experiment are dimension reduction, Gaussian process modeling for emulation, MCMC, and 
sequential Monte Carlo for posterior sampling when solving the inverse problem, sequential 
experimental design. The in-experiment problem can require nearly real-time solving of 
inverse problems. Although it is important to answer the science questions, it is not as 
important in-experiment. Scientists are highly interested in determining if the data are bad 
in-experiment and steering the experiment parameters so that they get the data they need for 
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scientific discovery, even if the discovery is later.

Statistical methods and emulation are also useful in the pre-experiment and post-experiment 
stages. For instance, an emulator can be very useful pre-experiment for performing sensitivity 
analysis. Solving inverse problems is typically a post-experiment problem.

5 Post-Experiment Physics and Math in Data Analysis

Stephan Hruszkewycz, speaker; Jeffrey Donatelli, moderator and author

With upcoming increases in energy and coherence, light sources will enable a number of 
new diffraction experiments that will require a host of new physics to model, as well as 
new advanced algorithms to solve the associated inverse problem of determining material 
properties from the experimental data. Furthermore, in many cases, these problems can 
become highly ill-posed, and thus additional physical constraints will need to be incorporated 
in order to uniquely and stably solve the inverse problem.

Many of the inverse problems described in the previous section can be described as 
extensions of the classical phase problem in coherent diffractive imaging (CDI). The most 
common way to solve the phase problem in CDI is through iterative projection methods, 
which requires one to derive computationally efficient operators to project model quantities 
to be consistent with various constraints in the inverse problem. Several extensions of 
these traditional iterative projection methods have been developed to target more complex 
inversion problems, e.g., multi-tiered iterative phasing, and model various uncertainties 
in specific experiments, such as angular uncertainties and pixel binning/blurring in Bragg 
coherent diffractive imaging.

Alternative solutions to the inverse problem may also include gradient-based methods, 
automatic differentiation, and black-box approaches. As the forward problem associated to 
the experiment becomes more complicated, these alternatives may become more appealing 
as they bypass the need to derive the mathematically complex projection operators that may 
be needed in the iterative projection approach.

The iterative projection methods will require that the inverse problem has an appropriate 
mathematical decomposition that lends itself to the development of computationally 
efficient projection operations that constrain the reconstructed model to be consistent with 
the data and satisfy any appropriate physical constraints.

The gradient-based approach requires that the gradient information of the forward model 
can be efficiently computed. The automatic differentiation route does not require the analytic 
derivation of the gradient, which is instead automatically computed if the forward model 
can be expressed in terms of a series of elementary arithmetic operations and elementary 
functions. The black-box approach only requires that the forward model can be computed, 
but may need much more computational resources in order to arrive at a solution.
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One example of an experiment that is using physics and math is that of Bragg coherent 
diffractive imaging (BCDI), where one is able to use the data to deduce the strain within a 
crystal.

In order to tackle the potential ill-posed nature of this new class of complex inverse problems, 
it may become necessary to incorporate additional physical constraints on the reconstructed 
models. This will require both physical insight to deduce what these constraints may be and 
new mathematics to efficiently express and impose these constraints on the physical model.

As the inverse problems become more complicated, as we try to reconstruct more complex 
models, and as we add new physical constraints to the system, carefully validating the 
solution becomes crucial, but also more challenging. New validation methods will need to be 
designed to ensure that the calculated results are real and implied by the data, and not simply 
the result of over constraining the system with model constraints.

It will be critical to determine whether the best route to solving the inverse problems from 
these new experiments is to focus on new fundamental mathematics, efficiently utilizing 
new hardware, incorporating new physical models, or all of the above. To this end, it will be 
important to establish a dialogue between domain scientists, mathematicians, computer 
scientists, and physicists in order to determine the best path forward.

6 Post-Experiment Machine Learning

Daniella Ushizima, speaker and author; Aric Hagberg, moderator

From industry to national laboratories, shape and structural properties of new compounds 
imaged through advanced instrumentation at light sources are used to measure the function 
and resilience of new materials. Advances in imaging for the design and investigation of 
materials have been remarkable. As an example, the growth of x-ray brilliance was 18 orders 
of magnitude in 5 decades, and extremely quick snapshots have enabled description of 
dynamic systems at the atomic scale. What drastically changed is the frequency with which 
these data modality are collected and used as a key scientific record, which is unprecedented. 
One of the main challenges is how to couple increasing data rate experiments to new Machine 
Learning methods in support of more automated analytical tasks for scientific discovery.

Recent efforts in machine learning applied to data representation and structural fingerprints 
have streamlined sample sorting and ranking, including the identification of special materials 
configurations from large databases. Methods such as convolutional neural networks have 
allowed automated characterization of abstract pictures, such as scattering patterns, based 
on prototypes stipulated by experts, or simulated at leadership computing facilities. Such 
characterizations or signatures enable image similarity search with real-time feedback in 
million-size image collections.

The ability to survey samples more broadly allied to computational algorithms to compare 
millions of samples not only offers unique opportunities for deeper scientific interpretation 
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of experiments, but also imposes hurdles, such as availability of storage, data transfers, large 
memory footprint, and intensive computation. Other key requirements that must be included 
in future strategic planning for post-experimental data:

•	 Policies for data generated at national user facilities regarding representation, sharing, 
and data storage;

•	 Policies and/or rules for raw private data storage in contrast to compressed public data 
sets.

One example of capability is the use of content-based image retrieval software tools that 
allow users to search for scientific images in a faster and more intuitive way. Also known as 
recommendation systems, such categorization tools can accelerate retrieval, inspection, and 
curation of scientific images produced at light sources:

Image
Database

Retrieval
Image

Feature Extraction Methods
Gray Level Co-occurrence Matrix
Histogram of Oriented Gradients
First Order Texture Features
Local Binary Pattern
Convolutional Neural Network
Convolutional Neural Network 
with Probability

Ranked Outputs

Distance Metrics
Euclidian Distance
Infinity Distance
Cosine Similarity
Pearson Correlation Coefficient
Chi-Square Dissimilarity
Kullback-Liebler Divergence
Jeffrey Divergence
Kolmogorov-Smirnov Divergence
Cramer-von Mises Divergence
Earth Movers Distance

Database Feature 
Vectors

Retrieval Image
Feature Vector

Figure A.G.1. Example of scientific image recommendation system: pyCBIR is a Python search engine funded by DOE ASCR to solve DOE imaging 
facilities’ problems [1]. 

Data compression post experiment supported by DOE ASCR in the service of DOE imaging facilities: [2] 
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There are opportunities and challenges with upgraded light sources, including:

•	 What will happen when in situ processing is not possible or limited?
•	 What will raw data storage of 140 petabytes per year cost?
•	 Scientists using machine learning need to understand the weight of their influence and 

limitations of their wisdom.

References
[1] Araújo, Flávio Henrique & Silva, Romuere & Medeiros, F.N.s & D. Parkinson, Dilworth & 
Hexemer, Alexander & M. Carneiro, Claudia & Ushizima, Daniela. (2018). “Reverse image 
search for scientific data within and beyond the visible spectrum.” Expert Systems with 
Applications. 109. 35-48. 10.1016/j.eswa.2018.05.015.
[2] Ke TW, Brewster AS, Yu SX, Ushizima D, Yang C, Sauter NK. “A convolutional neural network-
based screening tool for x-ray serial crystallography.” J Synchrotron Radiat. 2018 May;25(Pt 3) 
655-670. doi:10.1107/S1600577518004873. PMID: 29714177; PMCID: PMC5929353.

7 Materials Database

Logan Ward, speaker and author; Bryce Meredig, moderator

Materials data infrastructure (MDI) (see TMS Report “Building a Materials Data Infrastructure: 
Opening New Pathways to Discovery and Innovation in Science and Engineering”) and 
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databases of past experimental and simulation results have the potential to supply critical 
input data to data science methods. For example, a database of thousands of x-ray diffraction 
measurements conducted on different compounds would enable a machine learning-based 
prediction of the results of such a measurement on a new compound. While several notable 
databases of materials characterization results and simulations exist (e.g., CSD, ICDD, 
OQMD, materials project), most newly generated research data are not made available to the 
community for re-use, representing a missed opportunity for data science.

MDI has three key components:

•	 software (the operating system of the MDI);
•	 computer hardware; and
•	 data sets.

To take the National Institute of Standards and Technology (NIST)-funded Materials Data 
Facility (MDF) as an example, the enabling software is built on Globus, a domain-agnostic 
research data management platform. MDF uses Amazon Web Services and the National 
Center for Supercomputing Applications (NCSA) for computation and for data storage. Finally, 
the data sets available on MDF are sourced from other publicly available platforms (e.g., 
Crystallographic Open Database), as well as contributors from the research community.

Meeting the aforementioned software and compute requirements involves making design 
choices aimed at specific research use cases. Unsurprisingly, the various MDI platforms in 
use today have made different design choices to optimize for often-distinct research goals. 
For example, Bluesky at BNL has beamline applications in mind. MDF, thanks to its Globus 
roots, is well suited for storing and transferring very large research data sets across different 
materials research areas. Citrine Informatics’ Open Citrination platform is designed to 
enable users to efficiently train machine learning models on their data and then implement 
a sequential learning workflow. Given that the various MDI platforms have unique strengths 
and weaknesses, we see an important opportunity for these platforms to move toward 
interoperability so that end users can easily access the benefits of multiple platforms.

While the specific software and hardware requirements of a materials database vary 
depending on its scale of usage, the requirements are significant for every application. 
Developing a usable database with a functional user interface and application programming 
interface (API) requires a skillset uncommon for scientists and months to years of effort, along 
with potentially millions of dollars of investment. Hardware requirements for databases do 
benefit from the economies of scale for cloud computing, and the adoption of cloud resources 
by academics has become evident. Even after the construction of a successful database, 
adapting the website to new requirements and maintaining the underlying systems is also an 
effort that should not be overlooked. In short, creating and running any materials database is 
an effort that requires long-term investment on behalf of a dedicated staff.

There are two main use models for materials databases: publishing/organizing data, and 
using existing data for new science. The first step in either model is finding the appropriate 
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database for particular data. For publication, the main effort is ensuring the data are usable 
by others by adding metadata, documenting files and formats, and more. Many databases 
offer tools for aiding this process (e.g., schemas and parsers for common file types), and there 
are now journals that focus on describing published data (e.g., Scientific Data and Data in 
Brief). Using published data involves first finding the data and then shaping it into a format 
that works with the desired analysis tools, the focus of work by R. Seshadri and T. Sparks. 
Databases that further facilitate analysis by providing APIs are currently rare, but those that 
do have been employed frequently in data-driven materials efforts, such as matminer Python 
library and the Materials Project.

There is a rich set of opportunities and challenges for databases with current and future 
light sources. The foremost is providing training suitable for the diverse and often novice 
user base at beamlines. Education is a first and critical step for adoption. Adoption of data 
publication has its own well-known challenges due to the limited incentives and high barriers 
for publishing open data. The distributed, federated nature of beamlines coupled with 
increasingly large data sets will require distributed and scalable infrastructure and complicate 
the data discovery challenge. A final challenge is financially sustaining MDI, which is 
complicated by the need for specialized staff, uncertainty regarding long-term funding models 
for software, and costs that scale with usage.

8 Data Management

Daniel Allan, speaker and author; Amedeo Perazzo, moderator

As light sources, and user facilities in general, manage a great volume and variety of materials 
science data, it is important to remove friction around metadata capture, data management, 
and data analysis. Scientists must be able to easily connect with existing open-source tools 
and standards.

The BlueSky Project (developed as a collaboration between multiple facilities including NSLS-
II, LCLS-II, and APS-U) supports data management workflows that span across beamlines and 
computing facilities to provide seamless remote access of user data and analysis resources for 
post-experiment data analysis. It achieves this by emphasizing data interfaces independent 
of on-disk formats, working in a common language (Python), and sharing tools wherever 
practical.

Interfacility data management requires common interfaces (ranging from APIs to data) 
and streamlined authentication (e.g., avoid multiple hops and facility-specific protocols). 
Additionally, facilities should adopt common data lifecycle models. The specifics may vary 
from facility to facility, but there ought to be common models. The model should include the 
ability to store the data at the facility for some guaranteed amount of time (the actual time 
is facility dependent); the ability, if desired, to easily move data off site at a high rate over, for 
example, ESnet; the ability to surge, seamlessly as possible, to HPC if required; and the ability 
to easily create and automatically submit to analysis pipelines (or tweak existing ones).
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The BlueSky Project targets experimental science in all domains from the lab scale to the 
facility scale. It has been used at nearly all beamlines at NSLS-II and has growing adoption 
at LCLS-II and APS-U. Prominent examples include a live tomographic reconstruction 
experiment at APS, which leverages the streaming-friendly architecture that BlueSky 
propounds.

BlueSky captures experimental metadata, sample metadata, information about scientific 
intent, and bureaucratic information. It encodes all of this alongside the data into a specified 
but flexible schema and makes it available behind a programmatic interface. The schema can 
easily be composed with any existing standards. The data can be accessed programmatically 
or exported to any desired format.

As light sources become brighter and detectors become larger and faster, light sources are 
generating greater data velocity and volume. This exposes the data variety problem at user 
facilities, which stands out compared to other fields, such as astronomy or climate science. 
User facilities manage a large and changing collection of instruments. Techniques straddle 
a wide span of data rates, structures, and access patterns, and they employ a mix of well-
established data processing procedures and original, improvised techniques.

The expanding open-source scientific software ecosystem, particularly in Python, presents 
a good opportunity to collaborate between facilities and across domains to address this 
problem.
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Appendix H: Summary Table of Experiment 
Requirements

Area Scattering Spectroscopy Imaging Scattering Scattering Imaging
Name X-ray photon 

correlation 
spectroscopy 
(XPCS)

Resonant inelastic 
x-ray scattering 
(RIXS)

Bragg coherent 
diffraction imaging 
(BCDI)

Dynamic x-ray 
diffraction at high 
pressures (dynamic 
XRD)

High pressure 
diamond anvil cell 
x-ray diffraction 
(XRD with DAC)

High energy 
diffraction 
microscopy 
(HEDM)

Acronym XPCS RIXS/IXS BCDI Dynamic XRD HPXRD HEDM

Purpose To study 
fluctuations in 
materials structure 
(phase, domains, 
impurities) as they 
move around.

To study solid state 
perturbations 
due to vibrations, 
magnetic ordering 
(phonons, 
magnons, and 
others).

To conduct 
nanometer scale 
imaging of strain 
inside materials 
to understand 
damage, chemical 
reactions, and 
more.

To study dynamic 
high-pres sure 
phases and 
shocked states of 
materials.

To study high-
pressure phases of 
materials

To image solid 
(polycrystalline) 
materials under 
strain to study 
damage.

Synchrotron/
XFEL

Both Both Both, time resolved 
stroboscopic at 
XFEL

Both, mostly XFEL Synchrotron, will 
come to EuXFEL

Synchrotron 
almost exclusively

Experiment 
Duration

Very fast (single 
shot at XFEL) to 
hours

Hours to days (long 
integrations, low 
signal)

Minutes to hours Single shot (XFEL) Fast (seconds to 
minutes)

Hours to days

Data Types Detector images Mostly 1-D spectra 
in time series (1-D 
rows)

Detector images Detector images Detector images Detector images

Data Rate 100 hertz currently, 
up to 10 kilohertz 
at LCLS-II

Slow, minutes 
to hours per 1-D 
spectra

120 hertz (XFEL) to 
a few seconds

Currently 0.1 hertz 
to 10 hertz at 
EuXFEL

100 hertz currently, 
up to 10 kilohertz 
at LCLS-II

10–1 hertz

Data Accuracy Accurate if fitting is 
done correctly

Accurate Accurate if 
oversampling is 
good

Accurate if detector 
calibration is 
known

Accurate if detector 
calibration is 
known

Accurate if data 
density is good

Data Fusion Not usually Maybe Not usually; can be 
combined with XRF

Yes, if combined 
with imaging

Not usually Yes, combined 
with XCT

Time to 
Solution 
Needed

Days to months 
afterwards; lots of 
analysis

Real-time 
interpretation

Need iterative 
phase retrieval, 
typically a 
minimum of tens of 
minutes to days

Can be real time 
if orientation is 
figured out

Can be real time 
if orientation is 
figured out

Need lengthy 
reconstruction; 
days to months

Prediction 
Needed to 
Proceed

No, but helpful Yes, or data are 
confusing

No, but helpful Yes, to understand 
phases and 
Rietveld 
Refinement

Yes, to understand 
phases and 
Rietveld 
Refinement

Yes, if wanted 
to understand 
phases

Associated 
Simulation

Materials dynamics 
(finite element 
or molecular 
dynamics (MD))

Yes, materials band 
structure modeling, 
finite element, 
or MD

Materials dynamics 
(finite element, 
continuum, or MD). 
MD can be a very 
powerful way to 
couple to iterative 
phase retrieval.

Materials dynamics 
(finite element, 
continuum, or MD)

Materials dynamics 
(finite element, 
continuum. or MD)

Materials 
dynamics 
(finite element, 
continuum, or 
MD)

Typical 
Analysis 
Needed

Complicated: 
normalization of 
frame, compute 
intensity 
correlation pixel 
by pixel with time-
delayed frame 
typically over a 
region of interest 
then compute 
g2 and fit to 
decorrelation

Normalization/
background 
subtraction only

Data processing 
and iterative phase 
retrieval

Detector 
orientation 
and Rietveld 
Refinement

Detector 
orientation 
and Rietveld 
Refinement

HEDM analysis 
(iterative fitting 
of orientations 
back into sample 
plane and some 
sort of tessellation 
to fill in spaces 
between; 
sometimes near 
field grain shape 
seeding)
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Appendix I: Summary of Prior Workshop Reports
Many workshops, symposia, and conferences have been held and a number of reports have 
been written covering various areas of materials science, data science, and computing for 
experiments at advanced user light sources. With the large number and diversity of light 
source experiments, the number of data analytics challenges is very large.

Fifteen workshop reports were reviewed. They each covered a subset of five categories (data 
science, computing systems, simulation, materials science, and light sources). Although 
computing systems is not a big focus of our workshop, it seemed appropriate to note the 
reports covering this area.

One of the reports covered all areas to some degree:

•	 “Challenges at the Frontier of Matter and Energy: Transformative Opportunities for 
Discovery Science,” 2015 Report from the Basic Energy Sciences Advisory Committee 
(BESAC) to the U.S. Department of Energy Office of Science. [1]

A few reports covered data science and light sources:

•	 “Basic Research Needs for Innovation and Discovery of Transformative Experimental 
Tools;” [2] 

•	 “BES Exascale Requirements Review;” [3]
•	 “Data and Communications in BES Creating a Pathway for Scientific Discovery.” [4]

General requirements for computing plus data science relating to experimental science was 
comprehensively covered by:

•	 “Management, Analysis and Visualization of Experimental and Observational Data: The 
Convergence of Data and Computing.” [5]

Three sections on light source facilities feature details of beamlines and science use cases and 
list their computing impediments, gaps, needs, and challenges. These sections are very useful 
resources for our workshop.

Data science as it relates to materials is thoroughly covered in:

•	 “ASM Materials Data Analytics: A Pathfinding workshop;” [6]
•	 “Workshop on Artificial Intelligence Applied to Materials Discovery and Design;” [7]
•	 “Building a Materials Data Infrastructure: Opening New Pathways to Discovery and 

Innovation in Science and Engineering;” [8]
•	 Also, note the recent workshop (no report): “ICFA Beam Dynamics Mini-Workshop: 

Machine Learning Applications for Particle Accelerators.” [16]
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It is notable that DOE has funded most of the above highlighted reports and it is very 
encouraging to see that a number of organizations are attuned to this research area and 
are communicating the challenges and opportunities well through the focus of each of the 
workshops. However, the reports do not have a focused look at the nexus of data science, 
materials science, and light source experiments, which is where our workshop lies.

See below the table of workshop reports listing highlights as they relate to this workshop 
and listing areas of topic coverage (data science, computing systems, simulation, materials 
science, and light sources).

Report Name Year Sponsor Data 
Science

Computing 
Systems

Simulation Materials 
Science

Light 
Sources

“Basic Research Needs for Innovation 
and Discovery of Transformative 
Experimental Tools” [2]

2006 DOE Office of 
Science

X X X

“BES Exascale Requirements Review” 
[3]

2015 DOE ASCR and 
BES

X X X

“Future Platform Workshop Report” [9] 2017 DOE ASCR and 
BES

X X X

“ASM Materials Data Analytics: A 
Pathfinding Workshop” [6]

2015 ASM 
International’s 
Computational 
Materials 
Network and 
Ohio State 
University and 
funded by NIST

X X X

“Workshop on Artificial Intelligence 
Applied to Materials Discovery and 
Design” [7]

2017 DOE X X

“BES Roundtable Opportunities for 
Basic Research at the Frontiers of XFEL 
Ultrafast Science” [10]

2017 BES X X X

“Challenges at the Frontier of 
Matter and Energy: Transformative 
Opportunities for Discovery Science” 
[1]

2015 BES advisory 
committee

X X X X X

“Computational Materials Science and 
Chemistry: Accelerating Discovery and 
Innovation through Simulation-based 
Engineering and Science” [11]

2010 DOE X X X

“Basic Research Needs for Materials 
Under Extreme Environments” [12]

2007 BES X X X

“Data and Communications in BES 
Creating a Pathway for Scientific 
Discovery” [4]

2012 BES X X X X

“New Research Opportunities in 
Dynamic Compression Science” [13]

2012 WSU Institute 
for Shock 
Physics

X X X

“Next Generation Photon Sources 
for Grand Challenges in Science and 
Energy” [14]

2009 BES X X
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Report Name Year Sponsor Data 
Science

Computing 
Systems

Simulation Materials 
Science

Light 
Sources

“Building a Materials Data 
Infrastructure: Opening New Pathways 
to Discovery and Innovation in Science 
and Engineering” [8]

2017 TMS X X X

“Opportunities for New X-Ray Sources 
to Shed Light on New Functional 
Materials” [15]

2016 LANL X X

“Management, Analysis and 
Visualization of Experimental and 
Observational Data: The Convergence 
of Data and Computing” [5]

2015 ASCR/DOE X X X

Report Name Highlight

“Basic Research Needs for Innovation and 
Discovery of Transformative Experimental 
Tools” [2]

Identifies Priority Research Direction 4 as integration of experiment, theory and 
computation (real-time steering, multimodal data analysis, and integration of simulation)

“BES Exascale Requirements Review” [3] Section 3.6 covers computing and data challenges at BES facilities (streaming analysis, 
multimodal analysis of results from different instruments, data curation, accelerator 
simulation). The focus is on exascale.

“Future Platform Workshop Report” [9] Focus on future platforms (systems, storage, network, resource management, data 
and frameworks) for applications. Light sources are one application area (APS) out of 
the four covered. Data breakout summary was short; mentions machine learning, data 
representation, decision making, reproducible analysis, hypothesis creation.

“ASM Materials Data Analytics: A 
Pathfinding Workshop” [6]

Materials data analytics focus with priority areas: uncertainty, data sharing, multiscale 
optimization, decision support, extracting info from publications.

“Workshop on Artificial Intelligence 
Applied to Materials Discovery and Design” 
[7]

Priority areas: Common data formatting, integrating multiscale models. R&D pathways, data 
availability, data management (DM), database management, uncertainty quantification, 
validity of models, connections between models, artificial intelligence, data extraction, data 
fusion, materials discovery.

“BES Roundtable Opportunities for Basic 
Research at the Frontiers of XFEL Ultrafast 
Science” [10]

Focus on three priority research opportunities (electron motion within molecule, novel 
quantum phases, and rare events and intermediate states). Cross-cutting opportunities 
are multimodal ultrafast measurements and advances in theory of dynamical processes far 
from equilibrium.

“Challenges at the Frontier of Matter and 
Energy: Transformative Opportunities for 
Discovery Science” [1]

Very high level. Chapter 5 is “Advances in Modeling, Math, Algorithms, Data and Computing, 
Inverse Problems.” Chapter 6: Advances in Imaging Capabilities Across Scales.

“Computational Materials Science and 
Chemistry: Accelerating Discovery and 
Innovation through Simulation-based 
Engineering and Science” [11]

Mostly covers materials science and chemistry research, but has two subsections on 
simulation and its role in accelerating the development of materials and chemical 
processes. Recommends an integration of experimental capabilities with theoretical and 
computational modeling.

“Basic Research Needs for Materials Under 
Extreme Environments” [12]

Focus is primarily on materials research. One cross-cutting research theme is taking 
advantage of predictive theory and simulation to design and predict the properties and 
performance of new materials required for extreme environments.

“Data and Communications in BES 
Creating a Pathway for Scientific 
Discovery” [4]

Link experimental user facility needs with advances in data analysis and communications. 
Integrate theory and analysis, move analysis closer to experiment, match DM with 
capabilities of detectors.

“New Research Opportunities in Dynamic 
Compression Science” [13]

Highlights simulation and computation as an important parallel area, key to the success 
of dynamic compression science. “Extending the time scales of such simulations to 
experimentally observable processes in materials is generally challenging... An important 
overarching goal ... is to perform experiments on the time and length scales of numerical 
simulations and to bridge this knowledge gap.”
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Report Name Highlight

“Next Generation Photon Sources for 
Grand Challenges in Science and Energy” 
[14]

Scientific descriptions of photon science drivers, descriptions of facility capabilities, cross-
cutting challenges (including imaging). Emphasis on how to control experiments to do 
science connected with grand challenges.

“Building a Materials Data Infrastructure: 
Opening New Pathways to Discovery and 
Innovation in Science and Engineering [8]

Makes several recommendations. Strengthen Materials Data Infrastructure (MDI) core 
in repository, registry, and tool development. Sustain and grow MDI-dedicated funding. 
Create, execute, and monitor incentive mechanisms. Develop demonstration project and 
cross-disciplinary collaboration to accelerate adoption of the MDI. Contains a nice summary 
of previous workshops and reports in this area.

“Opportunities for New X-Ray Sources to 
Shed Light on New Functional Materials” 
[15]

Summary of a workshop. Combining the unique aspects of the proposed MaRIE XFEL 
with the ability to perform in situ measurements and subject materials to extreme and/
or hazardous dynamic environments will enable a host of novel studies, particularly on 
materials such as plutonium that are difficult or impossible to study elsewhere.

“Management, Analysis and Visualization 
of Experimental and Observational Data: 
The Convergence of Data and Computing” 
[5]

Comprehensive report on experimental and observational data challenges (mathematical 
aspects of data analysis, software engineering and software infrastructure, visual data 
exploration and analysis, operating systems, runtime and architecture, service facilities, 
data management workflow, storage, metadata and provenance, data curation). Case 
studies of Advanced Light Source, Advanced Photon Source, and Linac Coherent Light 
Source are included.

[1] https://science.energy.gov/~/media/bes/besac/pdf/Reports/Challenges_at_the_Frontiers_
of_Matter_and_Energy_rpt.pdf

[2] https://science.energy.gov/~/media/bes/pdf/reports/2017/BRNIDTET_rpt_print.pdf

[3] https://science.energy.gov/~/media/bes/pdf/reports/2017/BES-EXA_rpt.pdf

[4] https://science.energy.gov/~/media/bes/pdf/reports/2015/Data_and_Communications_
in_Basic_Energy_Sciences_rpt.pdf

[5] https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/ascr-eod-
workshop-2015-report_160524.pdf

[6] https://www.asminternational.org/documents/10192/25925847/
ASM+MDA+Workshop+Report+Final.pdf/0e29644e-a439-4928-a07a-8718817a46e4

[7] https://www.energy.gov/sites/prod/files/2018/03/f49/AI%20Applied%20to%20
Materials%20Discovery%20and%20Design_Workshop%20Summary%20Report.pdf

[8] http://www.tms.org/Publications/Studies/Materials_Data_Infrastructure/Materials_Data_
Infrastructure.aspx?hkey=d228f86c-e269-49a2-a638-395285b760e4

[9] http://press3.mcs.anl.gov/futureplatform/files/2017/11/FOAP-Roadmap-Report.pdf

[10] https://science.energy.gov/~/media/bes/pdf/reports/2018/Ultrafast_x-ray_science_rpt.
pdf

[11] https://science.energy.gov/~/media/bes/pdf/reports/files/Computational_Materials_

https://science.energy.gov/~/media/bes/besac/pdf/Reports/Challenges_at_the_Frontiers_of_Matter_and_Energy_rpt.pdf
https://science.energy.gov/~/media/bes/besac/pdf/Reports/Challenges_at_the_Frontiers_of_Matter_and_Energy_rpt.pdf
https://science.energy.gov/%7E/media/bes/pdf/reports/2017/BRNIDTET_rpt_print.pdf
https://science.energy.gov/~/media/bes/pdf/reports/2017/BES-EXA_rpt.pdf
https://science.energy.gov/%7E/media/bes/pdf/reports/2015/Data_and_Communications_in_Basic_Energy_Sciences_rpt.pdf
https://science.energy.gov/%7E/media/bes/pdf/reports/2015/Data_and_Communications_in_Basic_Energy_Sciences_rpt.pdf
https://science.energy.gov/%7E/media/ascr/pdf/programdocuments/docs/ascr-eod-workshop-2015-report_160524.pdf
https://science.energy.gov/%7E/media/ascr/pdf/programdocuments/docs/ascr-eod-workshop-2015-report_160524.pdf
https://www.asminternational.org/documents/10192/25925847/ASM+MDA+Workshop+Report+Final.pdf/0e29644e-a439-4928-a07a-8718817a46e4
https://www.asminternational.org/documents/10192/25925847/ASM+MDA+Workshop+Report+Final.pdf/0e29644e-a439-4928-a07a-8718817a46e4
https://www.energy.gov/sites/prod/files/2018/03/f49/AI%20Applied%20to%20Materials%20Discovery%20and%20Design_Workshop%20Summary%20Report.pdf
https://www.energy.gov/sites/prod/files/2018/03/f49/AI%20Applied%20to%20Materials%20Discovery%20and%20Design_Workshop%20Summary%20Report.pdf
http://www.tms.org/Publications/Studies/Materials_Data_Infrastructure/Materials_Data_Infrastructure.aspx?hkey=d228f86c-e269-49a2-a638-395285b760e4
http://www.tms.org/Publications/Studies/Materials_Data_Infrastructure/Materials_Data_Infrastructure.aspx?hkey=d228f86c-e269-49a2-a638-395285b760e4
http://press3.mcs.anl.gov/futureplatform/files/2017/11/FOAP-Roadmap-Report.pdf
https://science.energy.gov/~/media/bes/pdf/reports/files/Computational_Materials_Science_and_Chemistry_rpt.pdf
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Science_and_Chemistry_rpt.pdf

[12] https://science.energy.gov/~/media/bes/pdf/reports/files/muee_rpt_print.pdf

[13] https://dcs-aps.wsu.edu/documents/2016/04/dcs_user_workshop_report.pdf

[14] https://science.energy.gov/%7E/media/bes/pdf/reports/files/Next-Generation_Photon_
Sources_rpt.pdf

[15] https://www.lanl.gov/science-innovation/science-facilities/marie/_assets/docs/
workshops/opportunities-new-x-Ray-sources.pdf

[16] https://conf.slac.stanford.edu/icfa-ml-2018

https://science.energy.gov/~/media/bes/pdf/reports/files/Computational_Materials_Science_and_Chemistry_rpt.pdf
https://science.energy.gov/~/media/bes/pdf/reports/files/muee_rpt_print.pdf
https://dcs-aps.wsu.edu/documents/2016/04/dcs_user_workshop_report.pdf/
https://science.energy.gov/%7E/media/bes/pdf/reports/files/Next-Generation_Photon_Sources_rpt.pdf
https://science.energy.gov/%7E/media/bes/pdf/reports/files/Next-Generation_Photon_Sources_rpt.pdf
https://www.lanl.gov/science-innovation/science-facilities/marie/_assets/docs/workshops/opportunities-new-x-Ray-sources.pdf
https://www.lanl.gov/science-innovation/science-facilities/marie/_assets/docs/workshops/opportunities-new-x-Ray-sources.pdf
https://conf.slac.stanford.edu/icfa-ml-2018
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Appendix J: Experiment, Measurement, and 
Characterization

Discussion at the workshop identified different scientific workflows in terms of user 
science visits, classifying them as experiments, measurements, and characterizations. This 
classification is useful in understanding how experimental data can be used and help shape 
an ecosystem of tools that might address different classes of usage.

Experiment: putting a sample in without much knowledge of what to look for and using ad 
hoc setups and data acquisition. More prevalent in the past, or when the technique is still 
being developed actively. Very hard to plan for due to high variability and uncertainty in data 
requirements, analysis, and simulations. Can be viewed as hunting, and while not an efficient 
use of beamtime, can lead to innovation and is very good for training users.

Measurement: knowing exactly what you are doing and how. Usually requires a lot of 
preparation and (forward) simulations, and the experimental setup is mature and well-known, 
while the models might not be. Can produce a lot of data and relies on quick in situ feature 
identification and so-called “go on-quit” decisions. Examples of measurements include those 
produced by spectroscopic techniques such as RIXS and XPCS that measure the spectrum of 
absorption and transmission of light from a material.

Characterization: while the technique is well established, the sample features are not known 
in detail. It generates a lot of data, and it relies on inversion algorithms and can also benefit 
most from machine learning. Examples: ptychography, single shot particle diffraction, 
screening time (where you check sample suitability, see what is in a sample you made before 
starting the experiment).
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